If the robot carries all required for localization on board, it is inside-out localization. Humans and animals use inside-out localization. Not only will we talk about it, but they do generally not need direct and constant information about where they are in terms of a continuous stream of coordinates. They determine it “inside” based on different clues.
Some people call the process visual odometry. Of course, it works much better with a regular wheel (feet) based odometry. And this is why it is easier to make a robot with a navigation system than just a navigation system for any robot. Developers of such “universal positioning systems” would struggle because the data from an odometer could be in virtually any format – analog with different values or digitally coded with an unknown format. It could be with absolutely different resolutions, and many other parameters could be different.
Thus, most systems inside robots are inherently linked. It shall be understood and considered by anyone designing a robot right from the beginning.
It could be theoretically possible to do some sorts of converters—distantly resembling 50-Ohm high-frequency systems. Receivers, antennas, amplifiers, and transmitters, may have drastically different impedances. But people agreed to have a 50-Ohm common impedance. Thus, all units convert their impedance to 50 Ohms and from 50 Ohms to their internal impedance. Yes, it brings losses, complexities, and costs, but it turned out to be the most working solution in the radio frequency field. Something similar could be implemented here as well.
It could be done for robots … but it is not done. Yes, there are “universal interfaces” – like USB… hm… why are there so many different types of USB formats then?… 🙂 And why are there so many other types of interfaces? – well, cost implications and other significant constraints such as complexity, power consumption, and size.
As a result, a universal interface remains distant and elusive. And the reality is rather messy and unique for each type of robot.