

Hardware interfaces and protocols of

data exchange with Marvelmind

devices

Version 2024.03.19
Valid for firmware v7.000 and newer

www.marvelmind.com

http://www.marvelmind.com/

2

Table of contents

1. Connection to Marvelmind devices ... 4

1.1 UART and other interfaces for Super-Beacon .. 5

1.2 UART and other interfaces for beacon Mini-RX ... 6

1.3. UART and other interfaces for beacon Mini-TX-2 .. 7

1.4. UART and other interfaces for Modem HW v5.1 .. 8

1.5. UART and other interfaces for Super-Modem .. 9

1.6. UART and other interfaces for Modem HW v4.9 .. 10

1.7. UART and other interfaces for Industrial-TX, Industrial-RX, Industrial Super-Beacon ... 11

1.8. UART and SPI interfaces for beacon HW v4.9 ... 12

1.9. UART and SPI interfaces for beacon HW v4.5 ... 13

2. Protocols of communication via UART ... 14

2.1 ‘Marvelmind’ protocol for streaming .. 14

2.2 Protocol of reading/writing data from/to user device .. 29

2.3 NMEA0183 communication protocol .. 33

3. Protocols of communication via USB (virtual UART) .. 42

3.1 ‘Marvelmind’ protocol for streaming .. 42

3.2 Protocol of reading/writing data from/to user device .. 43

3.3 NMEA0183 communication protocol .. 44

3.4 Protocol of data exchange with modem via USB interface ... 45

4. Protocols of communication via RS-485 ... 72

4.1 ‘Marvelmind’ protocol for streaming .. 72

4.2 Protocol of reading/writing data from/to user device .. 73

4.3 NMEA0183 communication protocol .. 74

5. Protocols of communication via SPI ... 75

5.1 Packet with hedgehog location ... 75

5.2 Other data via SPI ... 76

6. Protocols of communication via I2C .. 77

6.1 Compass emulation for drones with PX4.. 77

6.2 Other data via I2C ... 78

7. Protocols of communication via UDP (Wi-Fi).. 79

7.1 Packet with hedgehog location ... 80

7.1.1. Packet with hedgehog location with real-time timestamps (firmware v7.200+) 82

7.2. Packet with stationary beacons locations ... 83

7.3. Packet with raw IMU data ... 84

7.3.1. Packet with raw IMU data with real-time timestamps (firmware v7.200+) 85

7.4. Packet with raw distances data .. 86

3

7.4.1. Packet with raw distances data with real-time timestamps (firmware v7.200+) 87

7.5. Packet with IMU fusion data ... 88

7.5.1. Packet with IMU fusion data with real-time timestamps (firmware v7.200+) 89

7.6. Packet with telemetry data .. 90

7.7. Packet with quality and extended location data .. 91

7.8. Packet with telemetry of all beacons .. 92

7.9. NMEA0183 protocol .. 93

8. Protocols of communication via CAN ... 94

8.1. ‘Marvelmind’ protocol of streaming ... 95

8.2. NMEA0183 communication protocol .. 96

9. Format of dashboard csv log file ... 97

9.1. Format of csv log file (dashboard version V7.000+) ... 98

9.2. Previous format of csv log (dashboard before V7.000 or modem HW v4.9) 112

10. Marvelmind API ... 113

10.1. Installation for Windows .. 114

10.2. Installation for Linux .. 115

10.3. Check connection to API .. 116

10.4. Marvelmind API library description ... 117

10.5. Description of C example for Marvelmind API .. 175

10.6. Device types ... 183

11. Sending user data from/to user devices ... 184

12. Contacts .. 186

Appendix 1. Calculating CRC-16 .. 187

Appendix 2. Format of error reply from modem ... 188

4

1. Connection to Marvelmind devices

For communication with Marvelmind devices (modem or mobile beacon (hedgehog)), it shall be

connected to an external device (robot, copter, AGV, etc.) via any of the following interfaces:

1. Connect to USB-host as an USB device of CDC class (virtual COM port in Windows,

ttyACM or ttyUSB in Linux). In the Windows, it requires driver - the same driver as for

modem. In Linux, the driver is not required, since the required driver is integrated into Linux

kernel. Because real RS-232 is not used in the interface, parameters of serial port opened

on the host (baudrate, number of bits, parity, etc) can be any.

2. Connect to UART – 2 wires soldering to pins for streaming or 3 wires for bidirectional

communication required. See the picture of hardware interface below. Logic level of UART

transmitter is CMOS 3.3V. Default baudrate is 500 kbps, configurable from the Dashboard

from following list: 4.8, 9.6, 19.2, 38.4, 57.6, 115.2, 500 kbps. Format of data: 8 bit, no

parity, 1 stop bit.

3. Connect to SPI. Marvelmind device acts as SPI slave device. Parameters of SPI: SPI mode

0, MSB inside each byte transmits first. Connection was tested on SCK speed up to 8 MHz.

Be careful to provide quality wiring connections on high speeds (more than 500 kHz).

4. Connect to RS-485 (for Super-Modem or Industrial Super-Beacon only).

5. Connect to I2C (for Super-Beacon only).

6. Connect to UDP via Wi-Fi (for Super-Modem) or any network connection (for Dashboard).

7. Connect to CAN (for Industrial Super-Beacon, for Super-Modem supplied by request).

Connection settings summary:

Interface Bitrate Other settings

USB
(virtual UART)

UART bitrate is not applicable, serial port speed
can be set to any value.
Data transmitting via USB full speed (12 Mbit/s)

UART settings not applicable

UART 4.8, 9.6, 19.2, 38.4, 57.6, 115.2, 500 Kbit/s
Can be selected in dashboard

8 bits of data, 1 stop bit,
no parity

SPI Tested up to 8 Mbit/s SPI Mode 0

RS-485 4.8, 9.6, 19.2, 38.4, 57.6, 115.2, 500 Kbit/s
Can be selected in dashboard (same as for UART)

8 bits of data, 1 stop bit,
no parity

I2C Up to 400 Kbit/s

UDP According to network connection speed

CAN 125 Kbit/s Standard frame

5

1.1 UART and other interfaces for Super-Beacon

 4x4 pinout for Super-Beacon:

4x4 pinout for Super-Beacon-2 and Super-Beacon-3:

6

1.2 UART and other interfaces for beacon Mini-RX

Use it only if you sure that you can solder it correctly

Do not forget to turn off the beacon with DIP-switches

If you solder bad and kill the beacon, Marvelmind team won’t be responsible for it

To get UART data streaming from beacon Mini-RX, you must solder to the pins on the board.

VCC TX RX D- D+ GND

UART USB

7

1.3. UART and other interfaces for beacon Mini-TX-2

Beacon Mini-TX-2 has a connector with the same pinout as beacon Mini-RX.

The UART cable can be used for connection to Mini-TX-2.

https://marvelmind.com/product/uart/

8

1.4. UART and other interfaces for Modem HW v5.1

I2C1_SDA

I2C1_SCL Ground

Not connect

Not connect

Reset

PA15

Not connect

USART3_TX

USART3_RX

PB5/SPI3_MOSI

PB3/SPI3_SCK

PB4/SPI3_MISO

PA4/DAC

C

SYNC

V_USB

9

1.5. UART and other interfaces for Super-Modem

New Super-Modem (from June 2023) connectors pinout:

Also Super-Modem includes onboard Wi-Fi interface. Confiieguration of the Wi-Fi connection is described in

UDP chapter.

- New version of Super-Modem (from June 2023) supports ONLY +5V power

supply. Don’t use +12V power supply converter for this version, it will burn the

beacon!

- RS485 modification pinouts (After Sep.2019)

USB D+ (3) USB D- (4)

RS485B (1)

+5V in (3)

+5V in (5)

USB D+ (3) USB D- (4)

RS485B (1)

10

1.6. UART and other interfaces for Modem HW v4.9

11

1.7. UART and other interfaces for Industrial-TX, Industrial-RX,

Industrial Super-Beacon

Modification (After June 2022) for versions 2 and 3

- Version 2 and 3 of Industrial-TX, Industrial-RX, Industrial Super-Beacon (from June 2022)

supports ONLY +5V power supply. Don’t use +12V power supply converter for this version, it

will burn the beacon!

- This version doesn’t have UART RX, but now is possible to use Interface connector as a power supply.

RS485 modification pinouts (After Sep.2019)

RS485 modification pinouts (Before Sep.2019)

CAN modification pinouts

RS485B (1)

USB D+ (3) USB D- (4)

RS485B (1)

DFU (2)

(4) Reset

UART RX 3.3V (5)

UART TX 3.3V (6)

CAN L (2)

CAN H (1)

+5V in

(3) +5V in (5)

12

1.8. UART and SPI interfaces for beacon HW v4.9

Note: As you see, the UART RX and SPI CS use the same shared pin. The function of this pin (UART receiver,
SPI chip select or others) can be selected in dashboard by parameter ‘PA15 pin function’ in ‘Interfaces’
section.

13

1.9. UART and SPI interfaces for beacon HW v4.5

14

2. Protocols of communication via UART

2.1 ‘Marvelmind’ protocol for streaming

All streaming packets have same general structure:

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet See detail

4 1 uint8_t Number of bytes of data transmitting N

5 N N bytes Payload data according to code of data field

5+N 2 uint16_t CRC-16 (see appendix 1)

Starting from software version v7.200 real-time timestamps are enabled by default. This means that
packets 0x0081, 0x0083, 0x0084, 0x0085 are streamed out instead of packets 0x0011, 0x0003, 0x0004,
0x0005 correspondingly.

If you need an old streaming format with local timestamps for compatibility with older software, you
can disable this option in the device settings in the dashboard:

15

2.1.1 Packet of hedgehog coordinates

This packet is transmitted every time new coordinates are measured or failed to measure.

 Packet with cm resolution coordinates

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0001

4 1 uint8_t Number of bytes of data transmitting 0x10

5 4 uint32_t Timestamp – internal time of beacon ultrasound
emission, in milliseconds from the moment of the
latest wakeup event. See note.

9 2 int16_t Coordinate X of beacon, cm

11 2 int16_t Coordinate Y of beacon, cm

13 2 int16_t Coordinate Z, height of beacon, cm

15 1 uint8_t Byte of flags:
Bit 0: 1 - coordinates unavailable. Data from fields
X, Y, Z should not be used.
Bit 1: timestamp units indicator (see note)
Bit 2: 1 - user button is pushed (V5.23+)
Bit 3: 1 - data are available for uploading to user
device, see section 2 (V5.34+)
Bit 4: 1 - want to download data from user device,
see section 2 (V5.34+)
Bit 5: 1 – second user button is pushed (V5.74+)
Bit 6: 1 – data for another hedgehog (not same
one that sending this packet)
Bit 7: – reserved (0)

16 1 uint8_t Address of hedgehog

17 2 uint16_t Bit 0…11: orientation of hedgehogs pair in XY
plane, decidegrees (0…3600)
Bit 12: 1 – coordinates are given for center of
beacons pair; 0 – coordinates for specified
beacon
Bit 13: 1 - orientation is not applicable
Bit 14…15: reserved (0)

19 2 uint16_t Time passed from ultrasound emission to current
time, milliseconds (V5.88+)

21 2 uint16_t CRC-16 (see appendix 1)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

16

 Packet with mm resolution coordinates (firmware V5.35+)

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-Rx (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0011

4 1 uint8_t Number of bytes of data transmitting N

5 4 uint32_t Timestamp – internal time of beacon ultrasound
emission, in milliseconds from the moment of the
latest wakeup event. See note.

9 4 int32_t Coordinate X of beacon, mm

13 4 int32_t Coordinate Y of beacon, mm

17 4 int32_t Coordinate Z, height of beacon, mm

21 1 uint8_t Byte of flags:
Bit 0: 1 - coordinates unavailable. Data from fields
X,Y,Z should not be used.
Bit 1: timestamp units indicator (see note)
Bit 2: 1 - user button is pushed (V5.23+)
Bit 3: 1 - data are available for uploading to user
device, see section 2 (V5.34+)
Bit 4: 1 - want to download data from user device, see
section 2 (V5.34+)
Bit 5: 1 – second user button is pushed (V5.74+)
Bit 6: 1 – data for another hedgehog (not same one
that sending this packet)
Bit 7: – 1 – out of geofencing zone

22 1 uint8_t Address of hedgehog

23 2 uint16_t Bit 0…11: orientation of hedgehogs pair in XY plane,
decidegrees (0…3600)
Bit 12: 1 – coordinates are given for center of beacons
pair; 0 – coordinates for specified hedgehog
Bit 13: 1 - orientation is not applicable
Bit 14…15: reserved (0)

25 2 uint16_t Time passed from ultrasound emission to current
time, milliseconds (V5.88+)

27 M= N-22 Optional data – see the list

27+M 2 uint16_t CRC-16 (see appendix 1)

Note: for firmware versions before V5.20 timestamp is in 1/64 sec units and timestamp

units indicator (bit 1 of flags byte) is 0. For versions 5.20 and higher timestamp is in

milliseconds and timestamp units indicator is 1.

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

17

Optional data in mobile beacon location packet can include following structures:

 Speed data (7 bytes). Should be enabled in interfaces section of mobile beacon

settings in the dashboard

Offset Size (bytes) Type Description Value

0 1 uint8_t Code of data field = 1 means a vector of speed 1

1 2 int16_t Speed along X, mm/sec

3 2 int16_t Speed along Y, mm/sec

5 2 int16_t Speed along Z, mm/sec

18

 Packet with mm resolution coordinates and real-time timestamps (firmware

V7.200+)

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0081

4 1 uint8_t Number of bytes of data transmitting N

5 8 int64_t Timestamp – Unix time - number of milliseconds from
1970.01.01 00:00:00.
Time, synchronized by all devices with modem and
dashboard.

13 4 int32_t Coordinate X of beacon, mm

17 4 int32_t Coordinate Y of beacon, mm

21 4 int32_t Coordinate Z, height of beacon, mm

25 1 uint8_t Byte of flags:
Bit 0: 1 - coordinates unavailable. Data from fields
X,Y,Z should not be used.
Bit 1: timestamp units indicator (see note)
Bit 2: 1 - user button is pushed (V5.23+)
Bit 3: 1 - data are available for uploading to user
device, see section 2 (V5.34+)
Bit 4: 1 - want to download data from user device, see
section 2 (V5.34+)
Bit 5: 1 – second user button is pushed (V5.74+)
Bit 6: 1 – data for another hedgehog (not same one
that sending this packet)
Bit 7: – 1 – out of geofencing zone

26 1 uint8_t Address of hedgehog

27 2 uint16_t Bit 0…11: orientation of hedgehogs pair in XY plane,
decidegrees (0…3600)
Bit 12: 1 – coordinates are given for center of beacons
pair; 0 – coordinates for specified hedgehog
Bit 13: 1 - orientation is not applicable
Bit 14…15: reserved (0)

29 2 uint16_t Time passed from ultrasound emission to current
time, milliseconds (V5.88+)

31 M=N-26 Optional data – see the list

31+M 2 uint16_t CRC-16 (see appendix 1)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

19

2.1.2 Packet of all beacon’s coordinates

This packet is transmitted when the map is frozen, and repeats every 10 sec.

 Packet with cm resolution coordinates, code of data 0x0002.

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0002

4 1 uint8_t Number of bytes of data transmitting 1+N*8

5 1 uint8_t Number of beacons in packet N

6 1 N*8 bytes Data for N beacons

6+N*8 2 uint16_t CRC-16 (see appendix 1)

Format of data structure for every of N beacons:

Offset Size (bytes) Type Description

0 1 uint8_t Address of beacon

1 2 int16_t Coordinate X of beacon, cm

3 2 int16_t Coordinate Y of beacon, cm

5 2 int16_t Coordinate Z, height of beacon, cm

7 1 uint8_t Reserved (0)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

20

 Packet with mm resolution coordinates, code of data 0x0012 (firmware V5.35+)

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0012

4 1 uint8_t Number of bytes of data transmitting 1+N*14

5 1 uint8_t Number of beacons in packet N

6 1 N*14 bytes Data for N beacons

6+N*14 2 uint16_t CRC-16 (see appendix 1)

Format of data structure for every of N beacons:

Offset Size (bytes) Type Description

0 1 uint8_t Address of beacon

1 4 int32_t Coordinate X of beacon, mm

5 4 int32_t Coordinate Y of beacon, mm

9 4 int32_t Coordinate Z, height of beacon, mm

13 1 uint8_t Bit 0: 1 = location not applicable
Bit 1…7: reserved

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

21

2.1.3 Packet of raw inertial sensors data, code of data 0x0003

This packet is transmitted when new inertial sensors data available.

Supported hardware:

Super-Beacon: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Industrial Super-Beacon: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Modem HW5.1: supported, system update rate (if ‘IMU via modem’ enabled)
Super-Modem: supported, system update rate (if ‘IMU via modem’ enabled)
Mini-RX (Badge, Helmet, etc.): supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
 with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Modem HW4.9: supported, system update rate (if ‘IMU via modem’ enabled)
Beacon HW4.9: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Beacon HW4.5: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0003

4 1 uint8_t Number of bytes of data transmitting

5 32 Data packet (see lower)

37 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 2 int16_t Accelerometer, X axis, 1 mg/LSB

2 2 int16_t Accelerometer, Y axis, 1 mg/LSB

4 2 int16_t Accelerometer, Z axis, 1 mg/LSB

6 2 int16_t Gyroscope, X axis, 0.0175 dps/LSB

8 2 int16_t Gyroscope, Y axis, 0.0175 dps/LSB

10 2 int16_t Gyroscope, Z axis, 0.0175 dps/LSB

12 2 int16_t Compass, X axis, 1100 LSB/Gauss

14 2 int16_t Compass, Y axis, 1100 LSB/Gauss

16 2 int16_t Compass, Z axis, 980 LSB/Gauss

18 1 uint8_t Address of beacon

19 5 5 bytes Reserved (0)

24 4 uint32_t Timestamp, ms

28 1 uint8_t Flags:
Bit 0: 1 = accelerometer data n/a
Bit 1: 1 = Gyroscope data n/a
Bit 2: 1 = Compass data n/a
Bit 3…7 – reserved (0)

29 3 3 bytes reserved

Note: Compass data are available only for HW v4.9 beacons with IMU.

https://marvelmind.com/product/uart/

22

 Packet of raw inertial sensors data with real-time timestamps, code of data

0x0083 (firmware V7.200+)

This packet is transmitted when new inertial sensors data available.

Supported hardware:

Super-Beacon: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Industrial Super-Beacon: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Modem HW5.1: supported, system update rate (if ‘IMU via modem’ enabled)
Super-Modem: supported, system update rate (if ‘IMU via modem’ enabled)
Mini-RX (Badge, Helmet, etc.): supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
 with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Modem HW4.9: supported, system update rate (if ‘IMU via modem’ enabled)
Beacon HW4.9: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)
Beacon HW4.5: supported, 100 Hz (if ‘Raw inertial sensors data’ enabled)

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0083

4 1 uint8_t Number of bytes of data transmitting

5 36 Data packet (see lower)

41 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 2 int16_t Accelerometer, X axis, 1 mg/LSB

2 2 int16_t Accelerometer, Y axis, 1 mg/LSB

4 2 int16_t Accelerometer, Z axis, 1 mg/LSB

6 2 int16_t Gyroscope, X axis, 0.0175 dps/LSB

8 2 int16_t Gyroscope, Y axis, 0.0175 dps/LSB

10 2 int16_t Gyroscope, Z axis, 0.0175 dps/LSB

12 2 int16_t Compass, X axis, 1100 LSB/Gauss

14 2 int16_t Compass, Y axis, 1100 LSB/Gauss

16 2 int16_t Compass, Z axis, 980 LSB/Gauss

18 1 uint8_t Address of beacon

19 5 5 bytes Reserved (0)

24 8 int64_t Timestamp – Unix time - number of
milliseconds from 1970.01.01 00:00:00.
Time, synchronized by all devices with
modem and dashboard.

32 1 uint8_t Flags:
Bit 0: 1 = accelerometer data n/a
Bit 1: 1 = Gyroscope data n/a
Bit 2: 1 = Compass data n/a
Bit 3…7 – reserved (0)

33 3 3 bytes reserved

Note: Compass data are available only for HW v4.9 beacons with IMU.

https://marvelmind.com/product/uart/

23

2.1.4 Packet of raw distances data, code of data 0x0004

This packet is transmitted every time new coordinates are measured or failed to measure, after
the packet with coordinates (code 0x0001/0x0011).

Available only if “raw distances data” option is enabled in ‘Interfaces’ section of settings.

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0004

4 1 uint8_t Number of bytes of data transmitting

5 32 Data packet (see lower)

37 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of hedgehog

1 6 Distance item 1

7 6 Distance item 2

13 6 Distance item 3

19 6 Distance item 4

25 4 uint32_t Timestamp – internal time of beacon
ultrasound emission, in milliseconds
from the moment of the latest wakeup
event (V5.89+).

29 2 uint16_t Time passed from ultrasound emission
to current time, milliseconds (V5.89+)

31 1 uint8_t reserved

Format of distance item

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of beacon (0 if item not filled)

1 4 uint32_t Distance to the beacon, mm

5 1 uint8_t Bit 0: 1 = Distance not applicable
Bit 1…7: Reserved (0)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

24

 Packet of raw distances data with real-time timestamps, code of data 0x0084

(firmware V7.200+)

This packet is transmitted every time new coordinates are measured or failed to measure, after
the packet with coordinates (code 0x0001/0x0011).

Available only if “raw distances data” option is enabled in ‘Interfaces’ section of settings.

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0084

4 1 uint8_t Number of bytes of data transmitting

5 36 Data packet (see lower)

41 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of hedgehog

1 6 Distance item 1

7 6 Distance item 2

13 6 Distance item 3

19 6 Distance item 4

25 8 int64_t Timestamp – unix time of beacon
ultrasound emission, number of
milliseconds from 1970.01.01 00:00:00.
Time, synchronized by all devices with
modem and dashboard.

29 2 uint16_t Time passed from ultrasound emission
to current time, milliseconds (V5.89+)

31 1 uint8_t reserved

Format of distance item

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of beacon (0 if item not filled)

1 4 uint32_t Distance to the beacon, mm

5 1 uint8_t Bit 0: 1 = Distance not applicable
Bit 1…7: Reserved (0)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

25

2.1.5 Packet of processed IMU data (code of data 0x0005)

This packet is transmitted when new inertial sensors data available.

Supported hardware:

Super-Beacon: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Industrial Super-Beacon: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Modem HW5.1: supported, system update rate (if ‘IMU via modem’ enabled)
Super-Modem: supported, system update rate (if ‘IMU via modem’ enabled)
Mini-RX (Badge, Helmet, etc.): supported, 100 Hz (if ‘Processed IMU data’ enabled)
 with the UART cable for Mini-Rx
Mini-TX: not supported in the current HW version
Mini-TX-2: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Modem HW4.9: supported, system update rate (if ‘IMU via modem’ enabled)
Beacon HW4.9: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Beacon HW4.5: supported, 100 Hz (if Processed IMU data’ enabled)

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0005

4 1 uint8_t Number of bytes of data transmitting

5 42 Data packet (see lower)

47 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 4 int32_t Coordinate X of beacon (fusion), mm

4 4 int32_t Coordinate Y of beacon (fusion), mm

8 4 int32_t Coordinate Z of beacon (fusion), mm

12 2 int16_t W field of rotation quaternion

14 2 int16_t X field of rotation quaternion

16 2 int16_t Y field of rotation quaternion

18 2 int16_t Z field of rotation quaternion

20 2 int16_t Velocity X of beacon (fusion), mm/s

22 2 int16_t Velocity Y of beacon (fusion), mm/s

24 2 int16_t Velocity Z of beacon (fusion), mm/s

26 2 int16_t Acceleration X of beacon, mm/s2

28 2 int16_t Acceleration Y of beacon, mm/s2

30 2 int16_t Acceleration Z of beacon, mm/s2

32 1 uint8_t Address of beacon

33 1 1 byte Reserved (0)

34 4 uint32_t Timestamp, ms

38 1 uint8_t Flags:
Bit 0: 1 = Location data n/a
Bit 1: 1 = Quaternion data n/a
Bit 2: 1 = Velocity data n/a
Bit 3: 1 = Acceleration data n/a
Bit 4…7 – reserved (0)

39 3 3 bytes Reserved (0)

Note: Quaternion is normalized to 10000 value.

https://marvelmind.com/product/uart/

26

 Packet of processed IMU data with real-time timestamps, code of data 0x0085

(firmware V7.200+)

This packet is transmitted when new inertial sensors data available.

Supported hardware:
Super-Beacon: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Industrial Super-Beacon: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Modem HW5.1: supported, system update rate (if ‘IMU via modem’ enabled)
Super-Modem: supported, system update rate (if ‘IMU via modem’ enabled)
Mini-RX (Badge, Helmet, etc.): supported, 100 Hz (if ‘Processed IMU data’ enabled)
 with the UART cable for Mini-Rx
Mini-TX: not supported in the current HW version
Mini-TX-2: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Modem HW4.9: supported, system update rate (if ‘IMU via modem’ enabled)
Beacon HW4.9: supported, 100 Hz (if ‘Processed IMU data’ enabled)
Beacon HW4.5: supported, 100 Hz (if Processed IMU data’ enabled)

Please see the note about timestamps.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0085

4 1 uint8_t Number of bytes of data transmitting

5 46 Data packet (see lower)

51 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 4 int32_t Coordinate X of beacon (fusion), mm

4 4 int32_t Coordinate Y of beacon (fusion), mm

8 4 int32_t Coordinate Z of beacon (fusion), mm

12 2 int16_t W field of rotation quaternion

14 2 int16_t X field of rotation quaternion

16 2 int16_t Y field of rotation quaternion

18 2 int16_t Z field of rotation quaternion

20 2 int16_t Velocity X of beacon (fusion), mm/s

22 2 int16_t Velocity Y of beacon (fusion), mm/s

24 2 int16_t Velocity Z of beacon (fusion), mm/s

26 2 int16_t Acceleration X of beacon, mm/s2

28 2 int16_t Acceleration Y of beacon, mm/s2

30 2 int16_t Acceleration Z of beacon, mm/s2

32 1 uint8_t Address of beacon

33 1 1 byte Reserved (0)

34 8 int64_t Timestamp – Unix time - number of
milliseconds from 1970.01.01 00:00:00.
Time, synchronized by all devices with
modem and dashboard.

42 1 uint8_t Flags:
Bit 0: 1 = Location data n/a
Bit 1: 1 = Quaternion data n/a
Bit 2: 1 = Velocity data n/a
Bit 3: 1 = Acceleration data n/a

43 3 3 bytes Reserved (0)

Note: Quaternion is normalized to 10000 value.

https://marvelmind.com/product/uart/

27

2.1.6 Packet of telemetry data (code of data 0x0006)

This packet is transmitted after location update, if the option “Telemetry stream” is enabled in
‘Interfaces’ section of settings.

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported (firmware V7.000+)
Super-Modem: supported (firmware V7.000+)
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0006

4 1 uint8_t Number of bytes of data transmitting

5 16 Data packet (see lower)

21 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 2 uint16_t Battery voltage, mV

2 1 int8_t RSSI, dBm

3 1 uint8_t Address of the beacon

4 12 Reserved (0)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

28

2.1.7 Packet of quality and extended location data (code of data 0x0007)

This packet is transmitted after location update, if the option “Quality and extended location data”
is enabled in ‘Interfaces’ section of settings.

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: supported (only quality field)
Beacon HW4.9: supported (only quality field)
Beacon HW4.5: supported (only quality field)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0007

4 1 uint8_t Number of bytes of data transmitting

5 16 Data packet (see lower)

21 2 uint16_t CRC-16 (see appendix 1)

Format of data packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Device address

1 1 uint8_t Positioning quality, %

2 1 uint8_t 0 = no geofencing zone alarm
1…255 - index of geofencing zone
This field requires MMSW0005 license.

3 13 Reserved (0)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/
https://marvelmind.com/product/mmsw0005/

29

2.2 Protocol of reading/writing data from/to user device

2.2.1 Sending data from user device

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

If the user device needs to transmit data via Marvelmind system, it should send following frame:

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0x00

1 1 uint8_t Type of packet 0x49

2 2 uint16_t Code of data in packet 0x0200

4 1 uint8_t Number of bytes of data transmitting N

5 N N bytes Payload data

5+N 2 uint16_t CRC-16 (see appendix 1)

The data will be transmitted via radio to the modem by the parts of the size defined as ‘User
payload data size’ in ‘Interfaces’ section of dashboard settings for hedgehog. The rate of
sending these parts is equal to update rate of hedgehog. Buffer size in hedgehog is 128 bytes.
Take this in attention to avoid overflow the buffer.

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

30

2.2.2 Writing data to user device

This packet is transmitted from Marvelmind device (modem or mobile beacon) to user device.

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0xff

1 1 uint8_t Type of packet 0x4a

2 2 uint16_t Code of data in packet 0x0200...
0x02ff

4 1 uint8_t Number of bytes of data transmitting N

5 N N bytes Payload data

5+N 2 uint16_t CRC-16 (see appendix 1)

For this command the codes of data from 0x200 to 0x2ff are reserved.

If the user device successfully processed the request, it should send a response in following
format:

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of hedgehog (can get from 0x0001
or 0x0011 packet of streaming)

1 1 uint8_t Type of packet 0x4a

2 2 uint16_t Code of data in packet 0x0200...
0x02ff

4 2 uint16_t CRC-16 (see appendix 1)

If the user device failed to process the request, it sends response in following format:

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of hedgehog (get from 0x0001
packet of streaming)

1 1 uint8_t Type of packet 0xca

2 2 uint16_t Code of requested data 0x0200...
0x02ff

4 1 uint8_t Code of error (see note) 1

5 2 uint16_t CRC-16 (see appendix 1)

In the following sections described the specific data writing requests.

Note: If user device could not process request from hedgehog, it should send reply with one of

following error codes:

1 - unknown field "type of packet" in request
2 - unknown field "code of data" in request
3 - incorrect payload data in request
6 - device is busy and cannot retrieve requested data now

31

 Request of writing the movement path

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: on demand
Super-Modem: on demand
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

This packet contains one command of elementary movement. The Marvelmind device sends
one after another all commands for elementary movements in the path.

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0xff

1 1 uint8_t Type of packet 0x4a

2 2 uint16_t Code of data in packet 0x201

4 1 uint8_t Number of bytes of data transmitting 0x0c

5 12 12 bytes Payload data

17 2 uint16_t CRC-16 (see appendix 1)

Format of payload data:

Offset Size (bytes) Type Description Value

0 1 uint8_t Type of elementary movement:
0 - move forward
1 - move backward
2 - rotate right (clockwise)
3 - rotate left (counterclockwise)
4 - pause
5 - repeat program from start
6 - move to specified point
7 - setup speed

1 1 uint8_t Index of this elementary movement
(0 is the first)

2 1 uint8_t Total number of elementary movements

3 2 int16_t Parameter of movement:
Types 0; 1 - distance of movement, cm
Types 2; 3 - angle of rotation, degrees
Type 4: time of pause, ms
Type 6: X target coordinate, cm
Type 7: speed, %

5 2 int16_t Parameter of movement:
Type 6: Y target coordinate, cm

7 2 int16_t Parameter of movement:
Type 6: Z target coordinate, cm

9 3 3 bytes Reserved (0)

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

32

 Request of writing zones

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: on demand
Super-Modem: on demand
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

This packet contains one item of sequence of zones list. The Marvelmind device sends one
after another all commands for zones list.

Offset Size (bytes) Type Description Value

0 1 uint8_t Destination address 0xff

1 1 uint8_t Type of packet 0x4a

2 2 uint16_t Code of data in packet 0x202

4 1 uint8_t Number of bytes of data transmitting 0x25

5 37 37 bytes Payload data

42 2 uint16_t CRC-16 (see appendix 1)

Format of payload data:

Offset Size (bytes) Type Description Value

0 1 uint8_t Index of the zone

1 1 uint8_t Number of points in zone polygon (N)

2 1 uint8_t Index of first point in this packet: M=0…N-
1

3 1 uint8_t Flags:
Bit 0: 1 = no service zone
Bit 1: 1= no driving zone
Bit 2: 1= inverted zone
Bit 3: 1= active zone
Bit 4…7: reserved (0)

4 1 uint8_t Number of zones

5 32 4x8 bytes Up to 4 points of zone polygon (see below)

Format of payload data:

Offset Size (bytes) Type Description Value

0 4 int32_t X coordinate of the point, mm

4 4 int32_t Y coordinate of the point, mm

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

33

2.3 NMEA0183 communication protocol

Mobile beacon can output some of the NMEA0183 sentences via UART and USB (virtual UART)
interfaces. NMEA protocol should be enabled in the device with dashboard as shown on
following screenshot:

The device sends all enabled messages every time it receives updated position.

To get NMEA data from mobile beacon (hedgehog), it shall be connected to an external device
(robot, copter, AGV, etc.) via any of the following interfaces:

1. Connect to USB-host as an USB device of CDC class (virtual COM port in Windows, ttyUSB
or ttyACM in Linux). In the Windows, it requires driver - the same driver as for modem.
In Linux, the driver in most cases is not required, since the required driver is integrated
into Linux kernel. Because real RS-232 is not used in the interface, parameters of serial
port opened on the host (baudrate, number of bits, parity, etc) may be any.

2. Connect to UART on a hedgehog – 2 wires soldering to pins required. See the picture of
beacon interface below. To have the location data out, it is sufficient to connect only 2
wires: GND and USART2_TX. Logic level of UART transmitter is CMOS 3.3V. Default
baudrate is 500 kbps, it is configurable from the Dashboard (see parameter “UART speed,
bps” on above picture) from following list: 4.8, 9.6, 19.2, 38.4, 57.6, 115.2, 500 kbps.
Format of data: 8 bit, no parity, 1 stop bit.

34

2.3.1 General agreements for coordinates translation

Marvelmind system measures position in form of rectangular Cartesian system coordinates
(X, Y, Z), where Z in most cases is the height. For translation to GPS coordinates following
agreements are used:

 Z axis is directed up, Z coordinate means altitude above sea level;

 Y axis is directed to north, so Y is latitude;

 X axis is directed to east, so X is longitude;

 point (X= 0, Y= 0) has GPS coordinates according to georeference point (by default: 0
° North, 0 °' West);

Georeference coordinates can be set as shown on the screenshot:

GPS coordinates are calculated according to specified georeference point and WGS-
84 Earth model.
More, detailed,
Lat= Lat_ref + y*9.013373
where
Lat - latitude, microdegrees
Lat_ref - georeference latitude, microdegrees
y - y coordinates in Marvelmind system, meters

Long= Long_ref + x*8.98315/cos(Lat_ref/1000000)
Long - longitude, microdegrees
Long_ref - georeference longitude, microdegrees
Lat_ref - georeference latitude, microdegrees
x - x coordinates in Marvelmind system, meters

35

2.3.2 General agreements for time

After power on, mobile beacon counts time starting from 2016.08.01 00:00:00. User can
synchronize time with computer clock as shown on following screenshot.

36

2.3.3 Description of “NMEA0183” messages implementation

NMEA 0183 messages are ASCII coded text frames, consist of several parts, separated by
commas, and terminated by end of line. Before end of line, every message is finished by ‘*’
symbol, followed by two symbols of checksum, calculated according to NMEA 0183 standard.
Each part of NMEA 0183 message represents certain parameter.
Below is description of all supported messages and parameter fields.
Messages format is taken from NMEA 0183 standard version 3.01, January 1, 2002.

1. $GPRMC -Recommended Minimum Specific GNSS Data

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported (starting from SW V7.000)
Super-Modem: supported (starting from SW V7.000)
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

General format from NMEA 0183 standard:

Description of fields implementation:

1.1. ‘$GPRMC’ – designation of message type
1.2. ‘hhmmss.ss’ – UTC position fix

According to general agreements, time is counted from default 2016.01.01 or synchronized with
computer clock.

1.3. 'A' – status

‘A’ value is sent if last position update was successful
‘V’ value is sent if any error occurred in last position update

1.4. 'llll.llllll,a' – latitude, N/S

According to general agreements (see above), latitude corresponds to the Y coordinate relative to
georeference location. Latitude is presented with 6 digits of decimal-fraction of minutes, which
gives resolution not more than 2 mm,

1.5. 'yyyyy.yyyyyy,a' – longitude, E/W

According to general agreements (see above), longitude corresponds to the X coordinate relative
to georeference location Longitude is presented with 6 digits of decimal-fraction of minutes, which
gives resolution not more than 2 mm.

1.6. 'x.x' – speed over ground, knots

Marvelmind system measures the coordinates; the speed is calculated from dynamics of
coordinates with applying of some filtering. Optionally, it can use IMU fusion for speed calculation.

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

37

1.7. 'xxxxxx' - date: ddmmyy

According to general agreements, time is counted from default 2016.01.01 or synchronized with
computer clock.

1.8. 'x.x,a' - magnetic variation

This parameter value is always a null field.
1.9. 'a' - mode indicator

‘A’ value (autonomous mode) is sent if last position update was successful
‘N’ value (data not valid) is sent if any error occurred in last position update

2. $GPGGA -Global Positioning System Fix Data

Supported hardware:
Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported (starting from SW V7.000)
Super-Modem: supported (starting from SW V7.000)
Mini-RX (Badge, Helmet, etc.): supported with the UART cable for Mini-Rx
Mini-TX: not supported in the current HW version
Mini-TX-2: supported
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

General format from NMEA 0183 standard:

Description of fields implementation:
2.1. '$GPGGA' – designation of message type
2.2. ‘hhmmss.ss’ – UTC position fix

According to general agreements, time is counted from default 2016.01.01 or synchronized with
computer clock.

2.3. 'llll.llllll,a' – latitude, N/S
According to general agreements (see above), latitude corresponds to the Y coordinate relative to
georeference location. Latitude is presented with 6 digits of decimal-fraction of minutes, which
gives resolution not more than 2 mm

2.4. 'yyyyy.yyyyyy,a' – longitude, E/W
According to general agreements (see above), longitude corresponds to the X coordinate relative
to georeference location. Longitude is presented with 6 digits of decimal-fraction of minutes, which
gives resolution not more than 2 mm

2.5. 'x' – GPS quality indicator
‘1’ (GPS SPS Mode, fix valid) value is sent if last position update was successful

‘0’ (Fix not available or invalid) value is sent if any error occurred in last position update

https://marvelmind.com/product/uart/

38

2.6. 'xx' – number of satellites in use
Always '08' in current implementation.

2.7. 'x.x' – horizontal dilution of precision
Always '1.2' in current implementation.

2.8. 'x.x, M' – altitude re: mean-sea-level (geoid), meters
This corresponds to the Z coordinate according to general agreements.

2.9. 'x.x, M' – geoidal separation, meters
Always '0.0, M' value is transmitted.

2.10. 'x.x' – age of differential GPS data
This parameter value is always a null field, DGPS is not used.

2.11. 'xxxx' – differential reference station ID
This parameter value is always a null field.

3. $GPVTG -Course Over Ground and Ground Speed

Supported hardware:
Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported (starting from SW V7.000)
Super-Modem: supported (starting from SW V7.000)
Mini-RX (Badge, Helmet, etc.): supported with the UART cable for Mini-Rx
Mini-TX: not supported in the current HW version
Mini-TX-2: supported
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

General format from NMEA 0183 standard:

Description of fields implementation:

3.1. '$GPVTG' – designation of message type

3.2 . 'x.x, T' – course over ground, degrees True
According to NMEA standard, the course is the angle between vector of speed and direction to the
north. As shown in general agreements above, the Y axis is taken as direction to north.

3.3. 'x.x, M' – course over ground, degrees Magnetic
In current implementation, magnetic course is same as true course.

3.4. 'x.x, N' – speed over ground, knots
Marvelmind system measures the coordinates; the speed is calculated from dynamics of
coordinates with applying of some filtering. Optionally, it can use IMU fusion for speed calculation.

3.5. 'x.x, K' – speed over ground, km/hr
It is the same speed in another units

3.6. ‘a' – mode indicator
‘A’ value (autonomous mode) is sent if last position update was successful
‘N’ value (data not valid) is sent if any error occurred in last position update

https://marvelmind.com/product/uart/

39

4. $GPZDA –Time & Date

Supported hardware:
Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported (starting from SW V7.000)
Super-Modem: supported (starting from SW V7.000)
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported in the current HW version
Mini-TX-2: supported with the UART cable
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

General format from NMEA 0183 standard:

According to general agreements, time is counted from default 2016.01.01 or synchronized with
computer clock.

Description of fields implementation:
4.1. '$GPZDA' – designation of message type
4.1. ‘hhmmss.ss’ – UTC

Time (hours, minutes, seconds).
4.2. ‘xx’ – day, 01 to 31

Day.
4.3. ‘xx’ – month, 01 to 12

Month.
4.4. ‘xxxx’ – year

Year.
4.4. ‘xx – local zone hours

Local zone is always “00” hours.
4.5. ‘xx – local zone minutes

Local zone is always “00” minutes.

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/

40

5. $GPHDT – Heading

Supported hardware:
Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported (starting from SW V7.000)
Super-Modem: supported (starting from SW V7.000)
Mini-RX (Badge, Helmet, etc.): supported with the UART cable
Mini-TX: not supported
Mini-TX-2: supported with the UART cable
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Note you need MMSW0002 license to enable streaming of this packet.

General format from NMEA 0183 standard:

5.1. '$GPHDT' – designation of message type

5.2. 'x.x, T' – heading, degrees True
This is a heading angle calculated by using paired beacons or paired microphones feature with
fusion with the gyroscope.

https://marvelmind.com/product/uart/
https://marvelmind.com/product/uart/
https://marvelmind.com/product/mmsw0002/

41

2.3.4 Examples of NMEA data receiving

On the next screenshot is example of data, received from mobile beacon, connected via USB
(virtual COM port) to the OpenCPN software, running on the computer under MS Windows.

42

3. Protocols of communication via USB (virtual UART)

3.1 ‘Marvelmind’ protocol for streaming

All packets described in corresponding section for UART are also available via USB (virtual UART).

Note these data are also available for mini-TX and for mini-RX without ‘UART Cable for Mini-Rx’.

Streaming is terminated for 5 seconds if Marvelmind device receives any request according to
this protocol.

43

3.2 Protocol of reading/writing data from/to user device

All packets described in corresponding section for UART are also available via USB (virtual UART).

Note these data are also available for mini-TX and for mini-RX without ‘UART Cable for Mini-Rx’.

44

3.3 NMEA0183 communication protocol

All packets described in corresponding section for UART are also available via USB (virtual UART).

Note these data are also available for mini-TX and for mini-RX without ‘UART Cable for Mini-Rx’.

Streaming is terminated for 5 seconds if Marvelmind device receives any request according to
this protocol.

45

3.4 Protocol of data exchange with modem via USB interface

This protocol is used by Dashboard software and Marvelmind API described in next chapter.

Modem connects to USB-host as USB device of CDC class (virtual COM port in Windows, ttyUSB
or ttyACM in Linux).

Because real RS-232 is not used in this interface, parameters of serial port set on the host
(baudrate, number of bits, parity, etc.) may be any

Data is in binary format

«Network address» of device connected via USB is 0xff

Multibyte numbers are transmitted starting from low byte (little endian format)

46

3.4.1 Reading the latest coordinates pack (firmware V5.13+)

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmitting 0x64

3 100 (0x64) 100 bytes Data structure (see lower)

103 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

Format of data field (100 bytes)
Offset Size (bytes) Description

0 96 (6*16) Six last coordinates structures received by modem (see lower)

96 1 Byte of flags:
Bit 0…1: reserved
Bit 2: 1 = user data available (see section 12)
Bit 3…7: reserved

97 3 Reserved

Format of coordinates structure (16 bytes)
Offset Size (bytes) Description

0 1 Address of device

1 4 Coordinate X, mm (int32_t)

5 4 Coordinate Y, mm (int32_t)

9 4 Coordinate Z, mm (int32_t)

13 1 Byte of flags:
Bit 0: 1 – no relevant coordinates (red mode in dashboard)
Bit 1: 1 – temporary mobile beacon on frozen map (blue mode)
Bit 2: 1 – beacon is used for hedgehog positioning

14 2 Reserved (0)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x4110

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix 1) 0xc004

47

3.4.2 Reading/writing modem configuration

 Reading modem configuration (firmware V5.30+)

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x5000

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix 1) 0x0550

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data
transmission

0x30

3 0x30 structure Data structure (see
below)

0x33 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

48

 Writing modem configuration

Warning! To write modem configuration you must read configuration, setup the
data fields described in following section, and then write it. Do not change any
other bytes in structure, this may degrade the work of modem

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x5000

4 2 uint16_t Access mode 0x0000

6 1 uint8_t Number of bytes of data transmission 0x30

7 0x30 structure Data structure (see below)

0x37 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data 0x5000

4 2 uint16_t reserved

6 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

49

 Structure of modem configuration data

Many fields of data structure are not explained. Do not change the fields! They are used for
adjustment system from the Dashboard program; unauthorized changing may degrade the
work of modem

Offset Size (bytes) Type Description

0 20 20 bytes Not explained

20 1 int8_t Temperature of air setting Vt (signed).
Temperature is (Vt+23) °С

21 1 uint8_t Address of the beacon that should have map
coordinates X=0, Y=0

22 4 4 bytes Not explained

26 1 uint8_t Address of the beacon that should have map
coordinates X>0,Y=0

27 1 uint8_t Address of the beacon that should have map
coordinates with Y>0

28 1 uint8_t Control flags:
Bit 0: not explained
Bit 1: 1 - enabled filtering of mobile beacons
movement
Bit 2: not explained
Bit 3: 1 - high resolution mode (output coordinates
in mm instead cm)
Bit 4: not explained
Bit 5: 1 = mirroring of all map
Bit 6: 1= power save mode (power save works only
when all of the submaps are frozen)
Bit 7: not explained

29 2 2 bytes Not explained

31 1 uint8_t N, determines maximum frequency of retrieving
hedgehog coordinates
F(N)= 2^(N-1) Hz, N= 0…4,
F(5)= 12 Hz, F(6)= 16 Hz, F(7)= 16+ (maximum)

32 16 16 bytes Not explained

50

3.4.3 Reading/writing submap configuration

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

 Reading submap configuration (firmware V5.30+)

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x60XX where XX is
number of submap

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmission 0x50 (80)

3 80 structure Data structure (see below)

83 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

51

 Writing submap configuration (firmware V5.30+)

Warning! To write submap configuration you must read configuration, setup the
data fields described in following section, and then write it. Do not change any
other bytes in structure, this may degrade the work of modem

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x60XX where XX is
number of submap

4 2 uint16_t Access mode 0x0000

6 1 uint8_t Number of bytes of data
transmission

0x50 (80)

7 80 structure Data structure (see
below)

87 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data 0x5000

4 2 uint16_t reserved

6 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

52

 Structure of submap configuration data

Many fields of data structure are not explained. Do not change the fields! They are used
for adjustment system from the Dashboard program; unauthorized changing may degrade
the work of modem

Offset Size
(bytes)

Type Description

0 1 uint8_t Address of starting beacon for building submap

1 1 uint8_t Control word:
Bit 0: 1 - submap is frozen (freeze submap)
Bit 1: 1 - beacons are higher than hedgehogs
Bit 2...4: not explained
Bit 5: 1 - mirroring submap
Bit 6...7: not explained

2 1 uint8_t Limitation of distances:
Bit 0...6: manual limitation distances (if bit 7 = 1)
Bit 7: 0 - automatic limitation, 1 = manual

3 13 13 bytes Not explained

16 2 int16_t X shift of submap, cm

18 2 int16_t Y shift of submap, cm

20 2 uint16_t Rotation of submap, centidegrees

22 58 58 bytes Not explained

53

3.4.4 Sleeping/waking up devices

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0xfe

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0xb006

4 2 uint16_t Access mode For wake:
0x0002
Others:
0x0001

6 1 uint8_t Number of bytes of data transmission 0x08

7 1 uint8_t Password, byte 0 0x2d

8 1 uint8_t Password, byte 1 0x94

9 1 uint8_t Password, byte 2 0x5e

10 1 uint8_t Password, byte 3 0x81

11 1 uint8_t Command:
0 – standard sleep
1 – deep sleep (wake only on HW reset)
2 – wake up from standard sleep
3…255 - reserved

0…2

12 3 3 bytes reserved

15 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame for waking command (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0xfe

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data 0xb006

4 2 uint16_t reserved

6 2 uint16_t CRC-16 (see appendix)

Format of answer frame for sleeping commands (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0xfe

1 1 uint8_t Type of packet (modem reply) 0x7f

2 2 uint16_t Code of data 0xb006

4 2 uint16_t reserved

6 2 uint16_t CRC-16 of bytes 0…5 (see appendix 1)

54

8 1 uint8_t Address of device 0x01…0xfe

9 1 uint8_t Type of packet 0x10

10 2 uint16_t Code of data 0xb006

12 2 uint16_t reserved

14 2 uint16_t CRC-16 for bytes 8…13(see appendix)

Format of error reply is described in Appendix 2.

55

3.4.5 Setting address of device

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0xfe

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x0101

4 2 uint16_t Access mode 0x0000

6 1 uint8_t Number of bytes of data transmission 0x02

7 1 uint8_t Code of data item (address) 0x00

8 1 uint8_t New address of device

9 2 uint16_t CRC-16 (see appendix 1)

56

3.4.6 Reading measured raw distances

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

This command is accessible in two modes:

- With code of data 0x4000 – reading last eight distances. Answer frame contains last 8
measured distances from the moment of request

- With code of data 0x4001 – reading all distances frame by frame. Answer frame for
every next request contains next 8 saved measured distances. When all table of distances
is transmitted, it starts from the beginning

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x4000 or
0x4001

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmitting 0x28

3 40 (0x28) 40 bytes Data structure (see lower)

43 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

Format of data field (40 bytes)
Offset Size (bytes) Description

0 32 (8*4) Eight raw distances structures (see lower)

32 8 Reserved

Format of distance structure (4 bytes)
Offset Size (bytes) Description

0 1 Address of ultrasonic receiver

1 1 Address of ultrasonic transmitter

2 2 Measured distance between devices, mm (uint16_t)

57

3.4.7 Reading beacons’ state (firmware V5.33+)

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0xfe

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x0003

4 2 uint16_t Access mode 0x0002

6 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0x01…0xfe

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmission 0x20

3 32 32 bytes Data structure (see lower)

35 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

Format of data field:
Offset Size (bytes) Type Description

0 4 uint32_t Time of work from reset or wake-up (seconds)

4 1 uint8_t R, radio RSSI register value (received signal strength indicator).
If R>128, RSSI (dBm) = ((R-256)/2) – 74
If R<=128) RSSI (dBm) = (R/2) - 74

5 1 uint8_t Not explained

6 1 int8_t Measured temperature Vt (signed). Temperature is (Vt+23) °С

7 2 uint16_t Bit 0...11: power supply voltage, mV
Bit 12...13: not explained
Bit 14: 1: low power, device will enter sleep after short time
Bit 15: 1: very low power, device will enter deep sleep after short
time

9 23 23 bytes Not explained

58

3.4.8 Marvelmind robots control commands

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

 Robot control command

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of robot 0x01…0xfe

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x1000

4 2 uint16_t Access mode 0x0001

6 1 uint8_t Number of bytes of data transmission 0x10

7 16 (0x10) bytes uint8_t Robot control data (see lower)

23 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet (modem reply) 0x7f

2 2 uint16_t Code of data 0x1000

4 2 uint16_t reserved

6 2 uint16_t CRC-16 of bytes 0…5(see appendix 1)

8 1 uint8_t Address of robot 0x01…0xfe

9 1 uint8_t Type of packet (robot reply) 0x10

10 2 uint16_t Code of data 0x1000

12 2 uint16_t reserved

14 2 uint16_t CRC-16 of bytes 8…13(see appendix 1)

Format of error reply is described in Appendix 2.

Format of robot control data:
Offset Size

(bytes)
Type Description

0 1 uint8_t Mode of control:
0 - no control (wait mode)
1 - motors power control
2 - speed control
3 - writing movement program
4 - pause movement program
5 - continue movement after pause

1 1 uint8_t Code of operation:
0 - move forward
1 - move backward

59

2 - rotate clockwise
3 - rotate counterclockwise
4 - pause for given time (for mode 3)
5 - repeat movement program from start (for mode 3)
6 - move to given point by coordinates (for mode 3)
7 - setup movement speed (for mode 3)

2 1 uint8_t Control byte 1:
For mode 1: power on motors, %
For mode 2: speed of movement, %
For mode 3: number of the program step (starting from zero)

3 2 Int16_t Data for program (mode 3):
Code of operation 0 or 1: distance of movement, cm
Code of operation 2 or 3: angle of rotation, degrees
Code of operation 4: time of pause, ms
Code of operation 6: X coordinate of movement target, cm
Code of operation 7: speed of movement, %

5 1 uint8_t For mode 3: total number of steps in program.

6 2 int16_t Additional data for program (mode 3):
Code of operation 6: Y coordinate of movement target, cm

8 2 int16_t Code of operation 6: Z coordinate of movement target, cm

10 6 6 bytes Reserved (0)

Some comments for this complicated command.
There are three main modes of robot control specified in byte 0 of robot control structure:

 power control (mode 1)

 speed control (mode 2)

 move by program (mode 3)

Mode 1 and mode 2 are generally used for test purposes. In mode 1 robot moves forward,
backward, rotates left or right with selected power on motors. In mode 2 robot makes the
same but adjusting power to keep selected speed. The power or speed is set in byte 2 of
structure, type of movement - in byte 1.

Mode 4 and mode 5 are special commands for pausing movement during program
execution and continuing movement after pause.

The main mode for moving on complex trajectories is mode 3.
It allows to program to robot the sequence of primitive actions, which combination builds
the trajectory. Each item of the sequence should be sent by one command of this type.
Each command should contain the number of the current step in the byte 2 of robot control
structure, and total number of steps in the byte 5.

In the byte 1 of robot control structure the type of primitive movement is specified.
Parameters of the primitive movement are specified in fields "data for program" (bytes
3...4) and "additional data for program" (bytes 6...7).

So, the following primitives are available:

 move forward by given distance;

 move backward by given distance;

 rotate clockwise by given angle;

 rotate counterclockwise by given angle;

 pause by given time;

 restart the movement program from first item (for looping movements);

 move to given point (X, Y) in Marvelmind navigation system coordinates;

 change movement speed.

60

Robot begins execution of the program after receiving the sequence of primitives. After
program execution, robot stops. But if the program contains item with code of operation
5 (repeat from start), the program repeats loop which will be executed forever, until
receiving stop command or uploading new program.

61

 Stop robot

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of robot 0x01…0xfe

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x403

4 2 uint16_t Access mode 0x0001

6 1 uint8_t Number of bytes of data transmission 0x04

7 4 bytes 4 bytes Reserved (0) 0

11 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet (modem reply) 0x7f

2 2 uint16_t Code of data 0x403

4 2 uint16_t reserved

6 2 uint16_t CRC-16 of bytes 0…5 (see appendix 1)

8 1 uint8_t Address of robot 0x01…0xfe

9 1 uint8_t Type of packet (robot reply) 0x10

10 2 uint16_t Code of data 0x403

12 2 uint16_t reserved

14 2 uint16_t CRC-16 of bytes 8…13 (see appendix 1)

Format of error reply is described in Appendix 2.

This command simply terminates execution of any robot movement or program of
movements. The robot stops and waits for new commands.

62

3.4.9 Reading/writing device control settings (firmware V6.01+)

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

 Reading device control settings

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device (beacon/modem) 0x01…0xfe or 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x1201

4 2 uint16_t Access mode 0x0001

6 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size

(bytes)
Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03 if request was sent to
modem
0x7f if request was sent to
beacon

2 1 uint8_t Number of bytes of data
transmission

0x10

3 16 structure Data structure (see section 9.3).
Relevant only if request was sent to
modem (0xff)

11 2 uint16_t CRC-16 of bytes 0...10 (see appendix
1)

following data will be received of the request was sent to beacon

13 1 uint8_t Address of device 0x01...0xfe

14 1 uint8_t Type of packet 0x03

15 1 uint8_t Number of bytes of data
transmission

0x08/0x10

16 16 structure Data structure (see below).

32 2 uint16_t CRC-16 of bytes 12...22 (see
appendix 1)

Format of error reply is described in Appendix 2.

63

 Write device control settings

Format of request frame (from host to modem)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device (beacon/modem) 0x01…0xfe or 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x1201

4 2 uint16_t Access mode 0x0001

6 1 uint8_t Number of bytes of data transmission 0x10

7 16 structure Data structure (see below)

23 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03 if request was
sent to modem
0x7f if request was sent
to beacon

2 2 uint16_t Code of data 0x1201

4 2 uint16_t reserved

6 2 uint16_t CRC-16 of bytes 0…5
(see appendix 1)

following data will be received of the request was sent to beacon (with address 0x01...0xfe)

8 1 uint8_t Address of device 0x01…0xfe

9 1 uint8_t Type of packet 0x10

10 2 uint16_t Code of data 0x1201

12 2 uint16_t reserved

14 2 uint16_t CRC-16 of bytes 8…13
(see appendix 1)

Format of error reply is described in Appendix 2.

64

 Format of control settings payload data

Offset Size

(bytes)
Type Description

0 1 uint8_t Flags:
Bit 0...5: not explained, should be always zero!
Bit 6: 0 - stationary beacon mode, 1 - hedgehog mode
Bit 7: reserved (0)

1 1 uint8_t UART baudrate setting:
0: 500000 bps (default value)
1: 4800 bps
2: 9600 bps
3: 19200 bps
4: 38400 bps
5: 57600 bps
6: 115200 bps
7…255: reserved

2 1 uint8_t Reserved (0)

3 1 uint8_t Bit 0…3: radio profile:
0: 38.4 kbps
1: 150 kbps
2: 500 kbps
3...7: reserved

Bit 4…6: radio band:
0: 433 MHz
1: 868 MHz
2: 915 MHz
3: 315 MHz
4…7: reserved

Bit 7: reserved

4 1 uint8_t Type of UART/USB output:
0: Marvelmind protocol
1: NMEA0183

5 1 uint8_t Mask of NMEA frames to send in NMEA0183 mode:
Bit 0: 1 - send $GPRMC frame
Bit 1: 1 - send $GPGGA frame
Bit 2: 1 - send $GPVTG frame
Bit 3: 1 - send $GPZDA frame
Bit 4...7: reserved (0)

6 1 uint8_t Number of bytes of user payload data for sending from this
hedgehog to modem (0…32)

7 1 uint8_t Mask of IMU data for sending to modem in ‘IMU via modem’
mode:
Bit 0: IMU fusion location
Bit 1: quaternion
Bit 2: speed
Bit 3: acceleration
Bit 4: raw accelerometer
Bit 5: raw gyro
Bit 6: raw compass
Bit 7: 0 = send IMU fusion, 1 = send raw IMU

8 1 uint8_t Bit 0…6: interval of streaming telemetry (0 = no stream)

65

Bit 7: reserved (0)

9 1 uint8_t Bit 0: use IMU for speed calculation
Bit 1…7 – reserved (0)

10 6 6 bytes Reserved (0)

Warning! If you change radio profile on beacon connected by radio, the radio
connection will be lost. If you need to switch the profile, switch the radio profile for
all beacons one after another, and then switch radio profile for modem. All beacons
should be available on new radio profile after few seconds.

66

3.4.10 Reading list of devices in network (firmware V6.01+)

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)
Offset Size

(bytes)
Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x31xx
where
xx is
number
of
devices
group

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)

Offset Size
(bytes)

Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data transmitting 0x72

3 1 uint8_t Total number of devices in network (K)

4 112 112 bytes 0...16 structures of information about
device in network, see description lower

116 1 uint8_t Reserved 0x00

117 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

Format of data about device in network (7 bytes)
Offset Size

(byte

s)

Description

0 1 Address of device (0x01...0xfe)

1 1 Major version of firmware

2 1 Minor version of firmware

67

3 1 Bit 0...5: Type of device:
10: Wheel robot
12: Crawler robot
22: Beacon HW V4.5
23: Beacon HW V4.5 (hedgehog mode)
24: Modem (HW V4.5/4.9)
30: Beacon HW V4.9
31: Beacon HW V4.9 (hedgehog mode)
32: Mini-RX beacon
36: Mini TX beacon (HW V5.07)
37: Industrial-TX beacon
41: Industrial-RX beacon
42: Super-Beacon
43: Super-Beacon (hedgehog mode)
44: Industrial Super-Beacon
45: Industrial Super-Beacon (hedgehog
mode)
Bit 6: 1 -more than one device with this
address exist
Bit 7: 1 - sleeping mode

4 1 Second minor version of firmware

68

3.4.11 Reading version of firmware

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): supported
Mini-TX: supported
Mini-TX-2: supported
Modem HW4.9: supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of device 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0xfe00

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data
transmitting

0x08

3 1 uint8_t Minor version of firmware

4 1 uint8_t Major version of firmware

5 3 3 bytes Reserved

8 1 uint8_t Device type ID

9 2 uint16_t Reserved

11 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

69

3.4.12 Reading user data

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 2 uint16_t Code of data in packet 0x0004

4 2 uint16_t Access mode 0x0000

6 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x03

2 1 uint8_t Number of bytes of data
transmitting

0x84

3 1 uint8_t Total user data size

4 3 3 bytes Reserved (0)

7 128 uint8_t User data from hedgehogs

135 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

User data from hedgehogs is the sequence of records with following structure:

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of hedgehog H

1 1 uint8_t Number of bytes of user data from
hedgehog

M

2 M uint8_t M bytes of data from hedgehog H

70

3.4.13 Writing manual device location

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of beacon 0x01…0xfe

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x5003

4 2 uint16_t Access mode 0x0002

6 1 uint8_t Number of bytes of data
transmission

0x20

7 32 structure Data structure (see
below)

39 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data 0x5003

4 2 uint16_t reserved

6 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

Format of data structure:
Offset Size

(bytes)
Type Description Value

0 4 int32_t X coordinate, mm

4 4 int32_t Y coordinate, mm

8 4 int32_t Z coordinate, mm

12 1 uint8_t Not explained 0xff

13 4 int32_t Not explained 0

17 4 int32_t Not explained 0

21 4 int32_t Not explained 0

25 1 uint8_t Not explained 0x02

26 6 6 bytes Reserved 0

71

3.4.14 Writing manual distance between beacons

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Format of request frame (from host to modem)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data in packet 0x4003

4 2 uint16_t Access mode 0x0000

6 1 uint8_t Number of bytes of data
transmission

0x10

7 16 structure Data structure (see below)

23 2 uint16_t CRC-16 (see appendix 1)

Format of answer frame (from modem to host)

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet 0x10

2 2 uint16_t Code of data 0x4003

4 2 uint16_t reserved

6 2 uint16_t CRC-16 (see appendix 1)

Format of error reply is described in Appendix 2.

Format of data structure:
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of first beacon

1 1 uint8_t Address of second beacon

2 4 uint32_t Distance between beacons, mm

6 10 10 bytes Reserved 0

72

4. Protocols of communication via RS-485

4.1 ‘Marvelmind’ protocol for streaming

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

All packets described in corresponding section for UART are also available via RS-485.

Note these data are available only for Super-Modem and Industrial Super-Beacon, because they
have RS-485 hardware onboard.

73

4.2 Protocol of reading/writing data from/to user device

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: on demand
Modem HW5.1: not supported
Super-Modem: on demand
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

All packets described in corresponding section for UART can be implemented on demand.

Note these data can be available only for Super-Modem and Industrial Super-Beacon, because
they have RS-485 hardware onboard.

74

4.3 NMEA0183 communication protocol

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: supported
Modem HW5.1: not supported
Super-Modem: supported (starting from SW V7.000)
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

All packets described in corresponding section for UART are also available via RS-485.

Note these data are available only for Super-Modem and Industrial Super-Beacon, because they
have RS-485 hardware onboard.

75

5. Protocols of communication via SPI

5.1 Packet with hedgehog location

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: not supported
Modem HW5.1: on demand
Super-Modem: not supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: supported
Beacon HW4.5: supported

Super-Beacon, Beacon HW4.9 and Beacon HW4.5 can work as SPI slave devices and support
reading packet with hedgehog location data. Modem HW5.1 has hardware SPI support and
software support can be added on demand.

76

5.2 Other data via SPI

Supported hardware:

Super-Beacon: on demand
Industrial Super-Beacon: not supported
Modem HW5.1: on demand
Super-Modem: not supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Support of other data packets described in chapter 2 can be added on demand for Super-Beacon
and modem HW5.1

77

6. Protocols of communication via I2C

6.1 Compass emulation for drones with PX4

Supported hardware:

Super-Beacon: supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: not supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Paired Super-Beacons can work as more stable and precise compass connected via I2C to PX4.

You need to purchase MMSW0003 license for this.

https://marvelmind.com/product/mmsw0003/

78

6.2 Other data via I2C

Supported hardware:

Super-Beacon: on demand
Industrial Super-Beacon: not supported
Modem HW5.1: on demand
Super-Modem: not supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

Support of other data packets described in chapter 2 can be added on demand for Super-Beacon
and modem HW5.1

79

7. Protocols of communication via UDP (Wi-Fi)

Dashboard software can transmit data via UDP through network interfaces of the PC where the
dashboard is running. Destination IP address/port can be adjusted via menu File/UDP settings:

Super-Modem has onboard Wi-Fi, and it is able to stream locations of mobile beacons and other
data described below.

Configuration of WiFi network and UDP streaming is possible via Super-Modem settings in the
dashboard:

80

7.1 Packet with hedgehog location

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size Type Description Value

0 1 uint8_t Address of the beacon

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0011

4 1 uint8_t Data size (bytes) N

5 4 uint32_t Timestamp – time from running of
dashboard/Super-Modem in
milliseconds on the moment of receiving
coordinates

9 4 int32_t Coordinate X of beacon, mm

13 4 int32_t Coordinate Y of beacon, mm

17 4 int32_t Coordinate Z of beacon, mm

21 1 uint8_t Byte of flags:
Bit 0: 1 - coordinates unavailable. Data
from fields X,Y,Z should not be used.
Bit 1: timestamp units indicator (see
note)
Bit 2…6: reserved (0)
Bit 7: – 1 – out of geofencing zone

22 1 uint8_t Reserved (0)

23 2 uint16_t Bit 0…11: orientation of hedgehogs pair
in XY plane, decidegrees (0…3600)
Bit 12: 1 – coordinates are given for
center of beacons pair; 0 – coordinates
for specified hedgehog
Bit 13…15: reserved (0)

25 2 Reserved (0)

27 M=N-22 Optional data fields – see the list

27+M 2 Reserved (0)

Note: for dashboard and Super-Modem versions before V6.290 the timestamp is in 1/64 sec

units and timestamp units indicator (bit 1 of flags byte) is 0. For versions V6.290 and higher

timestamp is in milliseconds and timestamp units indicator is 1.

81

Optional data in mobile beacon location packet can include following structures:

 Speed data (7 bytes). Should be enabled in interfaces section of mobile beacon

settings in the dashboard

Offset Size (bytes) Type Description Value

0 1 uint8_t Code of data field = 1 means a vector of speed 1

1 2 int16_t Speed along X, mm/sec

3 2 int16_t Speed along Y, mm/sec

5 2 int16_t Speed along Z, mm/sec

82

7.1.1. Packet with hedgehog location with real-time timestamps (firmware v7.200+)

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size Type Description Value

0 1 uint8_t Address of the beacon

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0081

4 1 uint8_t Data size (bytes) N

5 8 int64_t Timestamp – unix time of beacon
ultrasound emission, number of
milliseconds from 1970.01.01 00:00:00.
Time, synchronized by all devices with
modem and dashboard.

13 4 int32_t Coordinate X of beacon, mm

17 4 int32_t Coordinate Y of beacon, mm

21 4 int32_t Coordinate Z of beacon, mm

25 1 uint8_t Byte of flags:
Bit 0: 1 - coordinates unavailable. Data
from fields X,Y,Z should not be used.
Bit 1: timestamp units indicator (see
note)
Bit 2…6: reserved (0)
Bit 7: – 1 – out of geofencing zone

26 1 uint8_t Reserved (0)

27 2 uint16_t Bit 0…11: orientation of hedgehogs pair
in XY plane, decidegrees (0…3600)
Bit 12: 1 – coordinates are given for
center of beacons pair; 0 – coordinates
for specified hedgehog
Bit 13…15: reserved (0)

29 2 Reserved (0)

31 M=N-26 Optional data fields – see the list

31+M 2 Reserved (0)

83

7.2. Packet with stationary beacons locations

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0012

4 1 uint8_t Number of bytes of data transmitting 1+N*14

5 1 uint8_t Number of beacons in packet N

6 1 N*14 bytes Data for N beacons

Format of data structure for every of N beacons:

Offset Size (bytes) Type Description

0 1 uint8_t Address of the beacon

1 4 int32_t Coordinate X of the beacon, mm

5 4 int32_t Coordinate Y of the beacon, mm

9 4 int32_t Coordinate Z of the beacon, mm

13 1 uint8_t Reserved (0)

84

7.3. Packet with raw IMU data

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of the beacon

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0003

4 1 uint8_t Number of bytes of data transmitting

5 2 int16_t Accelerometer, X axis, 1 mg/LSB

7 2 int16_t Accelerometer, Y axis, 1 mg/LSB

9 2 int16_t Accelerometer, Z axis, 1 mg/LSB

11 2 int16_t Gyroscope, X axis, 0.0175 dps/LSB

13 2 int16_t Gyroscope, Y axis, 0.0175 dps/LSB

15 2 int16_t Gyroscope, Z axis, 0.0175 dps/LSB

17 2 int16_t Compass, X axis, 1100 LSB/Gauss

19 2 int16_t Compass, Y axis, 1100 LSB/Gauss

21 2 int16_t Compass, Z axis, 980 LSB/Gauss

23 1 uint8_t Address of the beacon

24 5 5 bytes Reserved (0)

29 4 uint32_t Timestamp, ms

33 8 8 bytes reserved

Note: Compass data are available only for HW v4.9 beacons with IMU.

85

7.3.1. Packet with raw IMU data with real-time timestamps (firmware v7.200+)

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of the beacon

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0083

4 1 uint8_t Number of bytes of data transmitting

5 2 int16_t Accelerometer, X axis, 1 mg/LSB

7 2 int16_t Accelerometer, Y axis, 1 mg/LSB

9 2 int16_t Accelerometer, Z axis, 1 mg/LSB

11 2 int16_t Gyroscope, X axis, 0.0175 dps/LSB

13 2 int16_t Gyroscope, Y axis, 0.0175 dps/LSB

15 2 int16_t Gyroscope, Z axis, 0.0175 dps/LSB

17 2 int16_t Compass, X axis, 1100 LSB/Gauss

19 2 int16_t Compass, Y axis, 1100 LSB/Gauss

21 2 int16_t Compass, Z axis, 980 LSB/Gauss

23 1 uint8_t Address of the beacon

24 5 5 bytes Reserved (0)

29 8 int64_t Timestamp – unix time, number of
milliseconds from 1970.01.01 00:00:00.
Time, synchronized by all devices with
modem and dashboard.

37 8 8 bytes reserved

Note: Compass data are available only for HW v4.9 beacons with IMU.

86

7.4. Packet with raw distances data

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0004

4 1 uint8_t Number of bytes of data transmitting

5 32 Data packet (see lower)

Format of data packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of hedgehog

1 6 Distance item 1

7 6 Distance item 2

13 6 Distance item 3

19 6 Distance item 4

25 4 uint32_t Timestamp – internal time of beacon
ultrasound emission, in milliseconds
from the moment of the latest wakeup
event (V5.89+).

29 2 uint16_t Time passed from ultrasound emission
to current time, milliseconds (V5.89+)

31 1 uint8_t reserved

Format of distance item

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of beacon (0 if item not filled)

1 4 uint32_t Distance to the beacon, mm

5 1 uint8_t Reserved (0)

87

7.4.1. Packet with raw distances data with real-time timestamps (firmware v7.200+)

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0084

4 1 uint8_t Number of bytes of data transmitting

5 32 Data packet (see lower)

Format of data packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of hedgehog

1 6 Distance item 1

7 6 Distance item 2

13 6 Distance item 3

19 6 Distance item 4

25 8 int64_t Timestamp – unix time of beacon
ultrasound emission, number of
milliseconds from 1970.01.01 00:00:00.
Time, synchronized by all devices with
modem and dashboard.

33 2 uint16_t Time passed from ultrasound emission
to current time, milliseconds (V5.89+)

35 1 uint8_t reserved

Format of distance item

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of beacon (0 if item not filled)

1 4 uint32_t Distance to the beacon, mm

5 1 uint8_t Reserved (0)

88

7.5. Packet with IMU fusion data

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of the beacon

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0005

4 1 uint8_t Number of bytes of data transmitting

5 4 int32_t Coordinate X of beacon (fusion), mm

9 4 int32_t Coordinate Y of beacon (fusion), mm

13 4 int32_t Coordinate Z of beacon (fusion), mm

17 2 int16_t W field of rotation quaternion

19 2 int16_t X field of rotation quaternion

21 2 int16_t Y field of rotation quaternion

23 2 int16_t Z field of rotation quaternion

25 2 int16_t Velocity X of beacon (fusion), mm/s

27 2 int16_t Velocity Y of beacon (fusion), mm/s

29 2 int16_t Velocity Z of beacon (fusion), mm/s

31 2 int16_t Acceleration X of beacon, mm/s2

33 2 int16_t Acceleration Y of beacon, mm/s2

35 2 int16_t Acceleration Z of beacon, mm/s2

37 1 uint8_t Address of beacon

38 1 1 byte Reserved (0)

39 4 uint32_t Timestamp, ms

43 4 4 bytes Reserved (0)

Note: Quaternion is normalized to 10000 value.

89

7.5.1. Packet with IMU fusion data with real-time timestamps (firmware v7.200+)

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Please see the note about timestamps.

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of the beacon

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0085

4 1 uint8_t Number of bytes of data transmitting

5 4 int32_t Coordinate X of beacon (fusion), mm

9 4 int32_t Coordinate Y of beacon (fusion), mm

13 4 int32_t Coordinate Z of beacon (fusion), mm

17 2 int16_t W field of rotation quaternion

19 2 int16_t X field of rotation quaternion

21 2 int16_t Y field of rotation quaternion

23 2 int16_t Z field of rotation quaternion

25 2 int16_t Velocity X of beacon (fusion), mm/s

27 2 int16_t Velocity Y of beacon (fusion), mm/s

29 2 int16_t Velocity Z of beacon (fusion), mm/s

31 2 int16_t Acceleration X of beacon, mm/s2

33 2 int16_t Acceleration Y of beacon, mm/s2

35 2 int16_t Acceleration Z of beacon, mm/s2

37 1 uint8_t Address of beacon

38 1 1 byte Reserved (0)

39 8 int64_t Timestamp – unix time, number of
milliseconds from 1970.01.01 00:00:00.
Time, synchronized by all devices with
modem and dashboard

47 4 4 bytes Reserved (0)

Note: Quaternion is normalized to 10000 value.

90

7.6. Packet with telemetry data

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of the beacon

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0006

4 1 uint8_t Number of bytes of data transmitting

5 2 uint16_t Battery voltage, mV

7 1 int8_t RSSI, dBm

8 13 Reserved (0)

91

7.7. Packet with quality and extended location data

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0007

4 1 uint8_t Number of bytes of data transmitting

5 1 uint8_t Device address

6 1 uint8_t Positioning quality, %

7 1 uint8_t 0 = no geofencing zone alarm
1…255 - index of geofencing zone
This field requires MMSW0005 license.

8 13 Reserved (0)

https://marvelmind.com/product/mmsw0005/

92

7.8. Packet with telemetry of all beacons

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported (in SSM firmware)
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: on demand

Format of the packet

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x48

2 2 uint16_t Code of data in packet 0x2001

4 2 uint16_t Number of bytes of data transmitting

6 N*10 Telemetry for N beacon (see table
below)

Format of beacon telemetry item

Offset Size (bytes) Type Description Value

0 1 uint8_t Address of the beacon

1 2 uint16_t Power voltage, mV

3 1 int8_t RSSI, dBm

4 4 uint32_t Time passed from last data update, sec

8 2 uint16_t Reserved (0)

93

7.9. NMEA0183 protocol

Supported hardware/software:

Super-Beacon: not supported
Industrial Super-Beacon: not supported
Modem HW5.1: not supported
Super-Modem: supported
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported
Dashboard software: supported

Format of the packet

Offset Size (bytes) Type Description Value

0 N N bytes NMEA0183 message (see description
here)

N 1 uint8_t Address of the mobile beacon

Notes:

 Super-Modem streams NMEA0183 messages via UDP if NMEA0183 protocol is
selected in interfaces section of settings for the Super-Modem in the dashboard

 Dashboard streams NMEA0183 messages if NMEA0183 protocol is selected in
interfaces section of settings for the modem, and the option shown on the
screenshot below is selected in the Settings/UDP Settings menu in dashboard:

94

8. Protocols of communication via CAN

Supported hardware:

Super-Beacon: not supported
Industrial Super-Beacon: supported
Modem HW5.1: not supported
Super-Modem: on demand
Mini-RX (Badge, Helmet, etc.): not supported
Mini-TX: not supported
Mini-TX-2: not supported
Modem HW4.9: not supported
Beacon HW4.9: not supported
Beacon HW4.5: not supported

CAN hardware support can be installed in Super-Modem and Industrial Super-Beacon by request. If CAN
is installed, RS-485 is not available.

Parameters of CAN:

Baudrate: 125 kbps.

Frame format: standard.

95

8.1. ‘Marvelmind’ protocol of streaming

Packets described in corresponding chapter about UART streaming are transmitted also via CAN
with CAN frame id 0x10. Each CAN frame can contain from 1 to 8 bytes of data. Number of data
bytes is specified in DLC field of CAN frame.

Data are transmitted as raw stream, so CAN frame can include end of one data packet and
beginning of next packet. User should receive multiple CAN frames, place their data fields into
some buffer and process by the same way as data received from UART.

96

8.2. NMEA0183 communication protocol

Packets described in corresponding chapter about UART streaming are transmitted also via CAN
with CAN frame id 0x11. Each CAN frame can contain from 1 to 8 bytes of data. Number of data
bytes is specified in DLC field of CAN frame.

Data are transmitted as raw stream, so CAN frame can include end of one data packet and
beginning of next packet. User should receive multiple CAN frames, place their data fields into
some buffer and process by the

97

9. Format of dashboard csv log file

Dashboard stores locations of stationary and mobile beacons and other data into csv log files located in

‘log’ folder in dashboard directory. Starting from version V7.000 format of the log was changed. Previous

format was remained only for modem HW v4.9.

98

9.1. Format of csv log file (dashboard version V7.000+)

In the csv log file for dashboard versions V7.000+ each event is recorded to the log as one CSV line, and

different events correspond to different formats of the line. At the same time, starting of the line is equal

for all types of the line.

Here is the example of several lines from the csv log file:

T2021_11_04__173001_581,user,41,17,14,4.675,2.714,0.250,2,975,100

T2021_11_04__173001_581,user,41,17,15,4.665,2.708,0.250,2,975,114

T2021_11_04__173001_581,user,41,17,26,4.073,1.987,0.250,2,3462,128

T2021_11_04__173001_581,user,41,17,27,4.075,1.987,0.250,2,3462,141

T2021_11_04__173001_581,user,41,17,28,3.588,1.979,0.250,2,3496,155

T2021_11_04__173001_581,user,41,17,29,3.592,1.978,0.250,2,3496,169

T2021_11_04__173001_701,user,43,15,nl

T2021_11_04__173001_728,user,43,27,nl

T2021_11_04__173001_756,user,43,29,nl

Common part of the line includes first 3 fields:

“T2021_11_04__173001_581” – timestamp for data from this line: 2021.11.04, 17:30:01.581;

“user” – user name (reserved for future_. In future versions dashboard will support logging in users;

“41” – ID of the line type. Different line types have different formats in following fields.

There are some common special codes in data fields:

“nl” – no license. Some license is required for this field to be filled;

“na” – not applicable. No relevant data for this field. For example if mobile beacon was not successfully

located, fields for X,Y,Z coordinates will contain “na”.

Next chapters contain descriptions of different types of the lines.

99

9.1.1. Line type ID 01 – link to map file

This line is recorded when map file is saved automatically or by ‘Save map’ button pressed by user.

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 01 - Line type ID (link to map file)

3 Name of the map file saved at that moment

100

9.1.2. Line type ID 41 – Marvelmind protocol streaming record

This line is recorded when modem protocol setting in ‘Interfaces’ section is ‘Marvelmind’.

Marvelmind protocol has different types of records, and they correspond to different lines in log file,

described in following sub chapters.

9.1.2.1. Hedgehog position (41 17) or (41 129)

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 41 - Line type ID (Marvelmind protocol streaming)

3 17 (0x0011) – data code for hedgehog position
129 (0x0081) – data code for hedgehog position (with real-time timestamp streaming)

4 Hedgehog address

5 Hedgehog X coordinate, meters

6 Hedgehog Y coordinate, meters

7 Hedgehog Z coordinate, meters

8 Flags:
Bit 0: 1 - coordinates unavailable. Data from fields X,Y,Z should not be used.
Bit 1…6: reserved
Bit 7: – 1 – out of geofencing zone

9 Yaw angle and flags:
Bit 0…11: yaw angle of hedgehogs pair, decidegrees (0…3600)
Bit 12: 1 – coordinates are given for center of beacons pair; 0 – coordinates for specified
hedgehog

10 Time shift, ms. Time passed from ultrasound emission to calculation of the location in this
line

101

9.1.2.2. Stationary beacon position (41 18)

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 41 - Line type ID (Marvelmind protocol streaming)

3 18 (0x0012) – data code for stationary beacon position

4 Stationary beacon address

5 Beacon X coordinate, meters

6 Beacon Y coordinate, meters

7 Beacon Z coordinate, meters

8 Reserved field

9.1.2.3. Raw distances from hedgehog to stationary beacons (41 4) or (41 132)

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 41 - Line type ID (Marvelmind protocol streaming)

3 4 (0x0004) – data code for raw distances
132 (0x0084) – data code for raw distances (with real-time timestamp streaming)

4 Address of hedgehog

5 N – number of distances in the line

6 N distance sub records (2*N fields), see below

6+N*2+1 Time shift, ms. Time passed from ultrasound emission to measurement of the distances

Fields of the distance sub record:

0 Address of stationary beacon

1 Distance to stationary beacon

102

9.1.2.4. Raw IMU data (41 3) or (41 131)

This line requires MMSW0005 license.

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 41 - Line type ID (Marvelmind protocol streaming)

3 3 (0x0003) – data code for raw IMU data
131 (0x0083) – data code for raw IMU data (real-time timestamps enabled for hedgehog)

4 Address of hedgehog

5 Accelerometer, X axis, 1 mg/LSB

6 Accelerometer, Y axis, 1 mg/LSB

7 Accelerometer, Z axis, 1 mg/LSB

8 Gyroscope, X axis, 0.0175 dps/LSB

9 Gyroscope, Y axis, 0.0175 dps/LSB

10 Gyroscope, Z axis, 0.0175 dps/LSB

11 Compass, X axis, 1100 LSB/Gauss

12 Compass, Y axis, 1100 LSB/Gauss

13 Compass, Z axis, 980 LSB/Gauss

https://marvelmind.com/product/mmsw0005/

103

9.1.2.5. IMU fusion data (41 5) or (41 133)

This line requires MMSW0005 license.

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 41 - Line type ID (Marvelmind protocol streaming)

3 5 (0x0005) – data code for IMU fusion data
133 (0x0085) – data code for IMU fusion data (real-time timestamps enabled for hedgehog)

4 Address of hedgehog

5 Coordinate X of beacon (fusion), meters

6 Coordinate Y of beacon (fusion), meters

7 Coordinate Z of beacon (fusion), meters

8 W field of rotation quaternion

9 X field of rotation quaternion

10 Y field of rotation quaternion

11 Z field of rotation quaternion

12 Velocity X of beacon (fusion), mm/s

13 Velocity Y of beacon (fusion), mm/s

14 Velocity Z of beacon (fusion), mm/s

15 Acceleration X of beacon, mm/s2

16 Acceleration Y of beacon, mm/s2

17 Acceleration Z of beacon, mm/s2

https://marvelmind.com/product/mmsw0005/

104

9.1.2.6. Telemetry data (41 6)

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 41 - Line type ID (Marvelmind protocol streaming)

3 6 (0x0006) – data code for telemetry data

4 Address of the beacon

5 Supply voltage, V

6 RSSI, dBm

9.1.2.7. Quality and extended location data (41 7)

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 41 - Line type ID (Marvelmind protocol streaming)

3 7 (0x0007) – data code for quality and extended location data

4 Address of the hedgehog

5 Quality of the location, %

6 Number of the geofencing zone (this field requires MMSW0005 license)

https://marvelmind.com/product/mmsw0005/

105

9.1.3. Line type ID 42 – NMEA0183 streaming record

This line requires MMSW0005 license.

This line is recorded when modem protocol setting in ‘Interfaces’ section is ‘NMEA0183’.

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 42 - Line type ID (NMEA0183 protocol streaming)

3 Address of the hedgehog

4,5, etc Sequence of fields according to NMEA0183 format (NMEA0183 record has also comma
separated values format)

https://marvelmind.com/product/mmsw0005/

106

9.1.4. Line type ID 43 – user payload data transmitted through the hedgehog

This line requires MMSW0005 license.

This line is recorded if hedgehog has non-zero payload data size enabled in the interfaces section of

settings, and user device transmits any data via USB or UART of the hedgehog.

Also, payload data are available for some Marvlemind devices, for example robots v100 and Boxie.

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 43 - Line type ID (user payload)

3 Address of the hedgehog

4,5, etc Sequence of comma separated bytes of payload data (each field is 1 byte)

9.1.4.1. Payload telemetry data for Robot v100

General format of the line corresponds to user payload data format.

Data bytes (starting from fourth field of the line) form data records with formats described below.

Multibyte values are placed starting from low byte (little endian format).

Robot v100 telemetry Record N3:

Offset Size (bytes) Type Description Value

0 2 uint16_t Record ID 0x3003

2 2*12 Distances by 12 lidars (2 bytes per lidar)
Each lidar data has following format:
Bit 0…11 – distance by the lidar, mm
Bit 12…15 – distance measurement status
Status = 0 – distance is measured
Status <> 0 – distance is not measured

26 1 uint8_t General lidars status:
Bit0: 1 – lidars read successfully
 0 – lidars read failed
Bit 1…7 – reserved (0)

27 1 uint8_t Robot state:
0: Robot is normally stopped
1: Robot is stopped by any alarm
2: Robot is autonomously moving
3: Robot is charging

28 1 uint8_t RV - Robot battery voltage.
V= (RV/10) + 20 Volts

29 2 int16_t Robot supply current, x10 mA N

https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/robot-v100/
https://marvelmind.com/product/boxie/

107

If the value is negative, robot battery is
charging by this current.

31 1 uint8_t Remained battery capacity, %

32 2 uint16_t Robot supply power, Watt

34 2 uint16_t Speed of left wheel, mm/s

36 2 uint16_t Speed of right wheel, mm/s

37 1 uint8_t Power on left motor, %

38 1 uint8_t Power on right motor, %

39 2 uint16_t Desired speed, mm/s

41 2 int16_t Robot X coordinate, cm

43 1 uint8_t Status flags:
Bit 0…3 – reserved
Bit 4: 1 – ultrasonic tracking error
Bit 5…7 - reserved

44 2 int16_t Robot Y coordinate, cm

Robot v100 telemetry Record N4:

Offset Size (bytes) Type Description Value

0 2 uint16_t Record ID 0x3004

2 2*12 Distances by 12 lidars (2 bytes per lidar)
Each lidar data has following format:
Bit 0…11 – distance by the lidar, mm
Bit 12…15 – distance measurement status
Status = 0 – distance is measured
Status <> 0 – distance is not measured

26 1 uint8_t General lidars status:
Bit0: 1 – lidars read successfully
 0 – lidars read failed
Bit 1…7 – reserved (0)

27 1 uint8_t Robot state:
0: Robot is normally stopped
1: Robot is stopped by any alarm
2: Robot is autonomously moving
3: Robot is charging

28 1 uint8_t Index of current item in movement program

29 1 uint8_t Total number of items in movement
program

30 1 uint8_t Reserved

31 1 uint8_t Direction of obstacle by lidars:
0 – none
1 – forward
2 – left
3 - right

32 1 uint8_t Minimum alarm distance by lidar, x2cm

33 1 uint8_t Current measured lidar distance caused the
alarm, x2cm

34 3 Reserved

36 2 int16_t Robot X position, cm

38 2 int16_t Robot Y position, cm

108

9.1.4.2. Payload telemetry data for Robot Boxie

General format of the line corresponds to user payload data format.

Data bytes (starting from fourth field of the line) form data records with formats described below.

Multibyte values are placed starting from low byte (little endian format).

Robot Boxie telemetry Record N1:

Offset Size (bytes) Type Description Value

0 2 uint16_t Record ID 0x3101

2 2*12 Distances by 12 lidars (2 bytes per lidar)
Each lidar data has following format:
Bit 0…11 – distance by the lidar, mm
Bit 12…15 – distance measurement status
Status = 0 – distance is measured
Status <> 0 – distance is not measured

26 1 uint8_t General lidars status:
Bit0: 1 – lidars read successfully
 0 – lidars read failed
Bit 1…7 – reserved (0)

27 1 uint8_t Robot state:
0: Robot is normally stopped
1: Robot is stopped by any alarm
2: Robot is autonomously moving
3: Robot is charging

28 1 uint8_t RV - Robot battery voltage, x100 mV.
For example, value 118 means 11.8V

29 2 int16_t Robot supply current, x10 mA
For example, value 123 means 1.230 A

31 1 uint8_t Reserved

32 1 uint8_t Power on left motor, %

33 1 uint8_t Power on right motor, %

34 2 uint16_t Speed of left wheel, mm/s

36 2 uint16_t Speed of right wheel, mm/s

37 2 int16_t Passed path by odometry of left motor, cm

39 2 int16_t Passed path by odometry of right motor, cm

41 2 int16_t Robot X coordinate, cm

43 1 uint8_t Status flags:
Bit 0…1 – reserved
Bit 2: 1 – movement program is executing
Bit 2: 1 – movement is paused
Bit 4: 1 – ultrasonic tracking error
Bit 5…7 - reserved

44 2 int16_t Robot Y coordinate, cm

109

Robot Boxie telemetry Record N3:

Offset Size (bytes) Type Description Value

0 2 uint16_t Record ID 0x3103

2 2 int16_t Current “P” value of angle control PID
regulator

4 2 int16_t Current “I” value of angle control PID
reglator

6 2 int16_t Current “D” value of angle control PID
regulator

8 2 int16_t Robot X coordinate, calculated using EKF
filter, cm

10 2 int16_t Robot Y coordinate, calculated using EKF
filter, cm

12 2 int16_t Reserved

13 1 uint8_t General lidars status:
Bit0: 1 – lidars read successfully
 0 – lidars read failed
Bit 1…7 – reserved (0)

14 1 uint8_t Robot state:
0: Robot is normally stopped
1: Robot is stopped by any alarm
2: Robot is autonomously moving
3: Robot is charging

15 1 uint8_t Index of current movement step (first
waypoint is 0, second is 1 etc)

16 1 uint8_t Total movement steps in current program

17 1 uint8_t Movement flags:
Bit 0: 1 – “Run forever” option
Bit 1…7 - reserved

18 1 uint8_t 0 – No alarm by lidar
1…12 - Index of the lidar, caused the alarm

19 1 uint8_t Minimum alarm distance by lidar, x2cm

20 1 uint8_t Current measured lidar distance caused the
alarm, x2cm

21 2 int16_t Angle by paired beacons on the robot,
degrees

23 1 uint8_t Desired speed of the robot (user setting),
cm/s

24 2 int16_t Robot X coordinate, cm

26 2 int16_t Robot Y coordinate, cm

28 2 int16_t Reserved

30 2 int16_t Reserved

32 2 int16_t Deviation angle between desired direction
and current orientation of the robot,
degrees

34 1 uint8_t Reserved

35 2 int16_t Fused robot orientation angle, degrees

36 5 5 bytes Reserved

110

9.1.5. Line type ID 44 – dashboard real-time player location

This line requires MMSW0005 license.

This line is recorded for hedgehog if real-time player is enabled. Real-time player provides 100 Hz location

data.

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 44 - Line type ID (real-time player location)

3 Address of the hedgehog

4 Reserved field

5 Hedgehog X coordinate, meters

6 Hedgehog Y coordinate, meters

7 Hedgehog Z coordinate, meters

https://marvelmind.com/product/mmsw0005/

111

9.1.6. Line type ID 55 – short beacon telemetry

This line contains beacon telemetry received from SSM (Super Super-Modem) .

Fields of the line:

N Field description

0 Timestamp (common field)

1 User name (common field)

2 55- Line type ID (short telemetry)

3 Address of the beacon

4 Low byte of the beacon power voltage: V0

5 High byte of the beacon power voltage: V1
Beacon power voltage is V= V0+V1*256 mV

6 RSSI in 2’s complement code: R0
If R0 is less than 128, RSSI= R0 dBm
If (R0 >= 128) RSSI= R0-256 dBm

7 Reserved

8 Reserved

112

9.2. Previous format of csv log (dashboard before V7.000 or modem HW

v4.9)

Here is the picture illustrating old format of the log file:

113

10. Marvelmind API

Marvelmind API library is used by Marvelmind Dashboard software and provides interface to user’s
software. API is coming as dynamic-link library (DLL) for MS Windows and shared library for Linux
(x86 and ARM platforms). The API connects to the modem via USB (virtual serial port) and
implements the communication protocol with modem.

In addition to the API library, the software package includes C example software, which was used
for testing of the API and includes calls of all API functions.

The example can be used as a basis for developing of a user’s software and for porting API library
interface (file ‘marvelmind_api.c’) to other programming languages.

Tested on:
1. MS Windows 10; CPU: Intel Core i5
2. Ubuntu 20.04; CPU: Intel Core i5
3. Raspbian (2018-11-13-raspbian-stretch-full); Platform: Raspberry Pi 3 Model B+

114

10.1. Installation for Windows

- Download Marvelmind API software package. Copy Dashboard API and example software to
directory that you will use for the program. Beacons the Windows version of the example is
coming with prebuilt executable file, you can immediately run ‘mm_api_example.exe’ from the
‘windows’ directory coming in API software package.

115

10.2. Installation for Linux

- Download Marvelmind API software package. Copy Dashboard API to directory that you will
use for the program. Note the Linux version is provided for two hardware platforms: x86 (most
of laptops based on Intel or AMD CPU) and arm (for example, single-board computers like
Raspberry PI)

- Copy library libdashapi.so corresponding to your platform to the directory /usr/local/lib by
executing command sudo cp libdashapi.so /usr/local/lib in terminal opened in directory with
libdashapi.so. After that, execute sudo ldconfig in terminal.

- May be, you will need to give rights for your user to access serial port by adding him to dialout
group:

 Execute in terminal: sudo adduser $USER dialout

 Add to the directory /etc/udev/rules.d file “99-tty.rules” with following content:
#Marvelmind serial port rules
KERNEL==”ttyACM0”,GROUP=”dialout”,MODE=”666”

- Build the example software – execute ‘make all’ in terminal opened in ‘source’ directory coming
with the package

- Run the example by typing ‘./mm_api_example’ in terminal

116

10.3. Check connection to API

After running example software, press “space” button in terminal, type command ‘version’ and
press enter. If the example software prints version of API, it can communicate with API library.

117

10.4. Marvelmind API library description

API is coming as dynamic-link library (DLL) for MS Windows and shared library for Linux (x86 and
ARM platforms). The library includes set of functions for monitoring and controlling Marvelmind
system via modem connected to USB port of the computer. This section of document contains
description of all these functions.

To provide more compatibility with different programming languages, most of complex data
structures are passing via untyped pointers to memory. Functions description include offset of
every data field in the memory pool. In the file ‘marvelmind_api.c’ from the example software
you can see implementation of moving data between memory pools and fields in C structures.

Types of parameters in the description are shown in C syntax. Here is description of the types:

Type Size
(bytes)

Description

bool 1 Boolean type. Zero means false, non-zero means true

uint8_t 1 Unsigned integer value, 0…255

int8_t 1 Signed integer value in two’s complement format, -128…127

uint16_t 2 Unsigned integer value, 0…65535

int16_t 2 Signed integer value in two’s complement format, -
32768…32767

uint32_t 4 Unsigned integer value, 0…4294967295

int32_t 4 Signed integer value in two’s complement format,
-2147483648…2147483647

void * 4/8 Memory pointer (address in memory).
4 bytes for 32-bit platforms, 8 bytes for 64-bit platforms.

Each function description includes set of API versions where this function is available. New API
versions will support more functions for new features in Marvelmind system. Now not all
features available in Dashboard are available via API, so if you need more API functions please
ask at info@marvelmind.com.

mailto:info@marvelmind.com

118

List of supported functions:

Function API
versions

License needed

Get version of Marvelmind API library V1+ none

Get last error V6+ none

Try to open serial port V1+ none

Try to open serial port by given name V2+ none

Try to open UDP port V9+ none

Close serial port V1+ none

Get version and CPU ID of Marvelmind device V1+ none

Get list of devices V1+ none

Wake device V1+ none

Send device to sleep V1+ none

Get telemetry data from beacon V1+ none

Get latest location data V1+ none

Get latest location data (with angle) V3+ none

Set location of the beacon V3+ MMSW0005

Set distance between beacons V4+ MMSW0005

Get latest raw distances data V1+ none

Get height of the hedgehog V4+ none

Set height of the hedgehog V4+ MMSW0005

Get height of stationary beacon in submap V4+ none

Set height of stationary beacon in submap V4+ MMSW0005

Get location update rate setting V1+ none

Set location update rate setting V1+ MMSW0005

Add submap V1+ MMSW0005

Delete submap V1+ MMSW0005

Freeze submap V1+ MMSW0005

Unfreeze submap V1+ MMSW0005

Get submap settings V1+ none

Set submap settings V1+ MMSW0005

Freese map V4+ MMSW0005

Unfreeze map V4+ MMSW0005

Get ultrasonic settings of the beacon V1+ none

Set ultrasonic settings of the beacon V1+ MMSW0005

Erase map V1+ MMSW0005

Reset device to default settings V1+ MMSW0005

Connect beacons to axes V2+ MMSW0005

Read modem’s configuration memory dump V3+ MMSW0005

Write modem’s configuration memory dump V3+ MMSW0005

Get temperature of air setting from modem V3+ none

Set temperature of air setting in modem V3+ none

Software reset of the device V3+ none

Get beacon real-time player settings V6+ none

Set beacon real-time player settings V6+ MMSW0005

Get georeferencing settings V6+ none

Set georeferencing settings V6+ MMSW0005

Get mode of updating positions V6+ none

Set mode of updating positions V6+ MMSW0005

Command to update positions V6+ MMSW0005

Set geofencing alarm state for the beacon V9+ MMSW0005

https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/

119

MMSW0006

Send generic user payload data V9+ MMSW0005

Get generic user payload data V9+ MMSW0005

Send command for manual distances measurement V9+ MMSW0011

Get streaming data from modem V9+ none

Check if the device type is modem V1+ none

Check if the device type is stationary beacon V1+ none

Check if the device type is hedgehog V1+ none

https://marvelmind.com/product/mmsw0006/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0011/

120

10.4.1. Get version of Marvelmind API library

Reads version of the API library. Required to ensure the needed functions are available in this
version of library.

Function name: mm_api_version
Declaration in C: bool mm_api_version(void *pdata);
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer.

Type Description

uint32_t Version of API library

121

10.4.2. Get last error

Reads status of last operation with API library to differ causes of the error.

Function name: mm_get_last_error
Declaration in C: bool mm_get_last_error(void *pdata);
Available for API versions: V6+

License required: none

Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer.

Type Description

uint32_t Status of last operation:
0: operation successfully executed
1: communication error
2: error opening serial port
3: license is required

122

10.4.3. Open serial port

Opens port where Marvelmind device (modem or beacon) is connected via USB (virtual serial
port). You don’t need to specify serial port name, because the API searching all serial ports and
checks whether it corresponds to Marvelmind device or no.

Function name: mm_open_port
Declaration in C: bool mm_open_port ();
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed, port is opened
false – error in execution

Parameters: none

123

10.4.4. Open serial port by given name

Opens port where Marvelmind device (modem or beacon) is connected via USB (virtual serial
port). Function tries to open port with specified name.

Function name: mm_open_port_by_name
Declaration in C: bool mm_open_port_by_name(void *pdata);
Available for API versions: V2+

License required: none

Returned value:

Type Description

bool true – function successfully executed, port is opened
false – error in execution

Parameters:
Type Description

void * Pointer to serial port name – sequence of ASCII
characters terminated by zero (ASCIIZ)

124

10.4.4.1. Open UDP port

Allows to establish communication with Super-Modem via UDP instead USB.

Function name: mm_open_port_udp
Declaration in C: bool mm_open_port_udp(void *pdata);
Available for API versions: V9+

License required: none

Returned value:

Type Description

bool true – function successfully executed, UDP port is
opened
false – error in execution

Parameters:
Type Description

void * Pointer to the structure of UDP settings (see below)

Structure of data by the pointer:

Type Description

uint16_t UDP port to connect

uint16_t Timeout of communication, ms

uint16_t reserved

Up to 255 bytes IP address– sequence of ASCII characters terminated by zero (ASCIIZ)

IP address and UDP port should correspond to the settings of the Super-Modem (see screenshot
below).

125

10.4.5. Close serial port

Closes port, if it was previously opened by mm_open_port function.
Function name: mm_close_port
Declaration in C: bool mm_close_port ();
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed, port is closed
false – error in execution

Parameters: none

126

10.4.6. Get version and CPU ID of Marvelmind device

Reads version and CPU ID. Version includes information about firmware version and type of
device hardware. CPU ID is the unique ID of the device item.

Function name: mm_get_device_version_and_id
Declaration in C: bool mm_get_device_version_and_id (uint8_t address, void
*pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, version and CPU ID data retrieved
false – error in execution

Parameters:
Type Description

uint8_t Address of Marvelmind device (1…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Major version of firmware (example: “6”, for version V6.07a)

uint8_t Minor version of firmware (example: “7”, for version V6.07a)

uint8_t Second minor version of firmware (example: “1”, for version V6.07a)

uint8_t Device type ID (see appendix).

uint8_t Firmware options (TBD).

uint32_t CPU ID. Printing this value as hexadecimal gives CPU ID in form shown in
dashboard and on the stickers on devices.

127

10.4.7. Get list of devices

Reads list of Marvelmind devices known to modem. The list includes list of all devices connected
by radio to modem’s network, including sleeping devices.

Function name: mm_get_devices_list
Declaration in C: bool mm_get_devices_list (void *pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, list of devices is retrieved
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Number of following devices in the list (N)

N*9
bytes

Sequence of N devices structures, described in next table

Structure of each device in the list:

Type Description

uint8_t Address of device

bool true = duplicated address - more than 1 device with same address was found
false = not duplicated address

bool true = device is sleeping
false = device not sleeping

uint8_t Major version of firmware (example: “6”, for version V6.07a)

uint8_t Minor version of firmware (example: “7”, for version V6.07a)

uint8_t Second minor version of firmware (example: “1”, for version V6.07a)

uint8_t Device type ID (see appendix).

uint8_t Firmware options (TBD).

uint8_t Flags:
Bit 0: 1 – device connection complete – device has confirmed connection
 0 – waiting for confirmation from device (like ‘Connecting…’ in dashboard).
Bit 1…7 - TBD

128

10.4.8. Wake device

Sends command to wake specified device. If wake command was sent and such device is
existing, the device will connect to modem in several seconds and will appear in devices list.

Function name: mm_wake_device
Declaration in C: bool mm_wake_device (uint8_t address);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, wake command was sent
false – error in execution

Parameters:
Type Description

uint8_t 1…254 - address of Marvelmind device to wake
0 – wake all devices

129

10.4.9. Send device to sleep

Send to sleep existing device.

Function name: mm_send_to_sleep_device
Declaration in C: bool mm_send_to_sleep_device (uint8_t address);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, sleep command was sent
false – error in execution

Parameters:
Type Description

uint8_t 1…254 - address of Marvelmind device to sleep
0 – send to sleep all devices

130

10.4.10. Get telemetry data from beacon

Reads telemetry data of Marvelmind beacon.

Function name: mm_get_beacon_telemetry
Declaration in C: bool mm_get_beacon_telemetry (uint8_t address, void *pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, telemetry is retrieved
false – error in execution

Parameters:
Type Description

uint8_t Address of Marvelmind beacon (1…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint32_t Working time of the beacon, seconds (time from reset or waking up).

int8_t RSSI, dBm – radio signal strength

int8_t Measured temperature, °C

uint16_t Supply voltage, mV

16 bytes Reserved (0)

131

10.4.11. Get latest location data

Reads latest updated coordinates pack from modem. Also reads user payload data if available.

Function name: mm_get_last_locations
Declaration in C: bool mm_get_last_locations(void *pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, location data was retrieved
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer:

Type Description

18*6
bytes

6 18-byte data structures of last updated coordinates, see table below

bool true – new raw distances are available to read

5 bytes TBD

uint8_t User payload data size (M)

M
bytes

User payload data

Structure of each location data item:

Type Description

uint8_t Address of device (1…254)
0 - this data item is not filled

uint8_t Head index (TBD)

int32_t X coordinate, mm

int32_t Y coordinate, mm

int32_t Z coordinate, mm

uint8_t Status flags (TBD)

uint8_t Quality of positioning, 0…100%

uint8_t TBD

uint8_t TBD

132

10.4.12. Get latest location data (with angle)

Reads latest updated coordinates pack from modem (with angle for paired beacons). Also reads
user payload data if available.

Function name: mm_get_last_locations2
Declaration in C: bool mm_get_last_locations2(void *pdata);
Available for API versions: V3+
License required: none

Returned value:
Type Description

bool true – function successfully executed, location data was retrieved
false – error in execution

Parameters:

Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

20*6 bytes 6 20-byte data structures of last updated coordinates, see table below

bool true – new raw distances are available to read

5 bytes TBD

uint8_t User payload data size (M)

M bytes User payload data

Structure of each location data item:

Type Description

uint8_t Address of device (1…254)
0 - this data item is not filled

uint8_t Head index (TBD)

int32_t X coordinate, mm

int32_t Y coordinate, mm

int32_t Z coordinate, mm

uint8_t Status flags (TBD)

uint8_t Quality of positioning, 0…100%

uint8_t TBD

uint8_t TBD

uint16_t Bit 0…11 – angle of rotation in 1/10 degree (if paired beacons feature is
enabled)
Bit 12 – 1 = angle not available
Bit 13…15 - reserved

133

10.4.13. Set location of the beacon

Manual setup of location of the specified beacon.

Function name: mm_set_beacon_location
Declaration in C: bool mm_set_beacon_location (uint8_t address, void *pdata);
Available for API versions: V3+
License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, location is updated
false – error in execution

Parameters:

Type Description

uint8_t Address of the beacon

void * Pointer to buffer with location data

Structure of data by pointer (should be filled before function call):

Type Description

int32_t New X coordinate of the beacon, mm

int32_t New Y coordinate of the beacon, mm

int32_t New Z coordinate of the beacon, mm

https://marvelmind.com/product/mmsw0005/

134

10.4.14. Set distance between beacons

Manual setup of distance between beacons.

Function name: mm_set_beacons_distance
Declaration in C: bool mm_set_beacons_distance (void *pdata);
Available for API versions: V4+
License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, distance is written
false – error in execution

Parameters:

Type Description

void * Pointer to buffer with distance data

Structure of data by pointer (should be filled before function call):

Type Description

uint8_t Address of first beacon

uint8_t Address of second beacon

int32_t Distance between beacons, mm

https://marvelmind.com/product/mmsw0005/

135

10.4.15. Get latest raw distances data

Reads latest updated raw distances pack from modem.

Function name: mm_get_last_distances
Declaration in C: bool mm_get_last_distances(void *pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, raw distances data was retrieved
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Number of raw distances data items (N).
Maximum number of raw distances per request is 16: N<=16

9*N
bytes

N 9-byte data structures of last raw distances, see table below

Structure of each raw distance data item:

Type Description

uint8_t Address of ultrasonic RX device (1…254)
0 - this data item is not filled

uint8_t RX Head index (TBD)

uint8_t Address of ultrasonic TX device (1…254)
0 - this data item is not filled

uint8_t TX Head index (TBD)

uint32_t Distance from TX device to RX device, mm

uint8_t TBD

136

10.4.16. Get height of the hedgehog

Returns height of mobile beacon (hedgehog).

Function name: mm_get_hedge_height
Declaration in C: bool mm_get_hedge_height (uint8_t address, void *pdata);
Available for API versions: V4+
License required: none

Returned value:

Type Description

bool true – function successfully executed, height is returned
false – error in execution

Parameters:

Type Description

uint8_t Address of the hedgehog

void * Pointer to buffer with height data

Structure of data by pointer:

Type Description

int32_t Height of the hedgehog, mm

137

10.4.17. Set height of the hedgehog

Setup height of mobile beacon (hedgehog).

Function name: mm_set_hedge_height
Declaration in C: bool mm_set_hedge_height (uint8_t address, void *pdata);
Available for API versions: V4+
License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, height is changed
false – error in execution

Parameters:

Type Description

uint8_t Address of the hedgehog

void * Pointer to buffer with height data

Structure of data by pointer (should be filled before function call):

Type Description

int32_t Height of the hedgehog, mm

https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/

138

10.4.18. Get height of the stationary beacon in submap

Returns height of stationary beacon in submap.

Function name: mm_get_beacon_height
Declaration in C: bool mm_get_beacon_height (uint8_t address, void *pdata);
Available for API versions: V4+
License required: none

Returned value:

Type Description

bool true – function successfully executed, height is returned
false – error in execution

Parameters:

Type Description

uint8_t Address of the beacon

void * Pointer to buffer with height data

Structure of data by pointer:

Type Description

uint8_t Submap ID, should be filled before function call

int32_t Height of the beacon, mm

139

10.4.19. Set height of the stationary beacon in submap

Setup height of stationary beacon in submap.

Function name: mm_set_beacon_height
Declaration in C: bool mm_set_beacon_height (uint8_t address, void *pdata);
Available for API versions: V4+
License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, height is changed
false – error in execution

Parameters:

Type Description

uint8_t Address of the beacon

void * Pointer to buffer with height data

Structure of data by pointer (should be filled before function call):

Type Description

uint8_t Submap ID

int32_t Height of the beacon, mm

https://marvelmind.com/product/mmsw0005/

140

10.4.20. Get location update rate setting

Reads location update rate setting from modem.

Function name: mm_get_update_rate_setting
Declaration in C: bool mm_get_update_rate_setting (void *pdata);

Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, update rate was retrieved
false – error in execution

Parameters:
Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint32_t Location update rate setting in mHz. So, 1000 is returned for 1 Hz, 16000 for
16 Hz, 50 for 0.05 Hz mode.

141

10.4.21. Set location update rate setting

Writes location update rate setting to modem.

Function name: mm_set_update_rate_setting
Declaration in C: bool mm_set_update_rate_setting (void *pdata);

Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, update rate was changed
false – error in execution

Parameters:

Type Description

void * Pointer to data

Structure of data by pointer (should be filled before function call):

Type Description

uint32_t Location update rate setting in mHz. So, 1000 is returned for 1 Hz, 16000
for 16 Hz, 50 for 0.05 Hz mode. The system will use most close to specified
update rate from the series: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5Hz, 1 Hz, 2 Hz, 4 Hz,
8 Hz, 12 Hz, 16 Hz, 16+Hz.

https://marvelmind.com/product/mmsw0005/

142

10.4.22. Add submap

Adds new submap.

Function name: mm_add_submap
Declaration in C: bool mm_add_submap (uint8_t submapId);
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, submap was
added
false – error in execution

Parameters:

Type Description

uint8_t Submap ID to add (0…254)

https://marvelmind.com/product/mmsw0005/

143

10.4.23. Delete submap

Delete existing submap.

Function name: mm_delete_submap
Declaration in C: bool mm_delete_submap (uint8_t submapId);
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, submap was
removed
false – error in execution

Parameters:
Type Description

uint8_t Submap ID to delete (0…254)

https://marvelmind.com/product/mmsw0005/

144

10.4.24. Freeze submap

Freezes submap.

Function name: mm_freeze_submap
Declaration in C: bool mm_freeze_submap (uint8_t submapId);
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, submap is
frozen
false – error in execution

Parameters:
Type Description

uint8_t Submap ID to freeze (0…254)

https://marvelmind.com/product/mmsw0005/

145

10.4.25. Unfreeze submap

Unfreezes submap.

Function name: mm_unfreeze_submap
Declaration in C: bool mm_unfreeze_submap (uint8_t submapId);
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, submap is
unfrozen
false – error in execution

Parameters:
Type Description

uint8_t Submap ID to unfreeze (0…254)

https://marvelmind.com/product/mmsw0005/

146

10.4.26. Get submap settings

Reads submap settings from modem.

Function name: mm_get_submap_settings
Declaration in C: bool mm_get_submap_settings (uint8_t submapId , void *pdata);
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed, submap settings were retrieved
false – error in execution

Parameters:
Type Description

uint8_t Submap ID (0…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Starting beacon trilateration

uint8_t Starting set of beacons, beacon 1

uint8_t Starting set of beacons, beacon 2

uint8_t Starting set of beacons, beacon 3

uint8_t Starting set of beacons, beacon 4

bool true = 3D navigation enabled

bool true = Submap is used only for Z coordinate

bool true = manual limitation distance
false = auto limitation distance

uint8_t Maximum distance, meters (for manual limitation distances)

int16_t Submap X shift, cm

int16_t Submap Y shift, cm

int16_t Submap Z shift, cm

uint16_t Submap rotation, centidegrees

int16_t Plane rotation quaternion, W (quaternion is normalized to 10000)

int16_t Plane rotation quaternion, X

int16_t Plane rotation quaternion, Y

int16_t Plane rotation quaternion, Z

int16_t Service zone thickness, cm

int16_t Hedges height in 2D mode

bool true = submap is frozen

bool true = submap is locked

bool true = stationary beacons are higher than mobile

bool true = submap is mirrored

4 bytes List of addresses of beacons in submap (0 = none)

8 bytes List of ID’s of nearby submaps (255 = none)

uint8_t Number of service zone polygon points (P)

P*4 bytes List of service zone polygon points structures (see below)

147

Structure of service zone polygon point:

Type Description

int16_t X, cm

int16_t Y, cm

148

10.4.27. Set submap settings

Writes submap settings to modem.

Function name: mm_set_submap_settings
Declaration in C: bool mm_set_submap_settings (uint8_t submapId , void *pdata);
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, submap settings were
changed
false – error in execution

Parameters:

Type Description

uint8_t Submap ID (0…254)

void * Pointer to data to be written (see ‘get submap settings’
function).

https://marvelmind.com/product/mmsw0005/

149

10.4.28. Freeze map

Freezes submap.

Function name: mm_freeze_map
Declaration in C: bool mm_freeze_map ();
Available for API versions: V4+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, map is frozen
false – error in execution

10.4.29. Unfreeze map

Freezes submap.

Function name: mm_unfreeze_map
Declaration in C: bool mm_freeze_map ();
Available for API versions: V4+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, map is
unfrozen
false – error in execution

https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0005/

150

10.4.30. Get ultrasonic settings of the beacon

Reads ultrasonic settings from specified beacon.

Function name: mm_get_ultrasound_settings
Declaration in C: bool mm_get_ultrasound_settings (uint8_t address , void *pdata);
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed, ultrasonic settings were retrieved
false – error in execution

Parameters:
Type Description

uint8_t Address of the beacon (1…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint16_t Frequency of ultrasound TX (not relevant for DSP RX-only beacons)

uint8_t Number of TX periods (not relevant for DSP RX-only beacons)

bool true= use AGC for RX
false = manual gain for RX

uint16_t Manual gain value (0…4000)

bool true = Sensor RX1 is enabled in normal mode

bool true = Sensor RX2 is enabled in normal mode

bool true = Sensor RX3 is enabled in normal mode

bool true = Sensor RX4 is enabled in normal mode

bool true = Sensor RX5 is enabled in normal mode

bool true = Sensor RX1 is enabled in frozen mode

bool true = Sensor RX2 is enabled in frozen mode

bool true = Sensor RX3 is enabled in frozen mode

bool true = Sensor RX4 is enabled in frozen mode

bool true = Sensor RX5 is enabled in frozen mode

uint8_t Index of DSP RX filter (relevant only for DSP beacons)
0 = 19 kHz
1 = 25 kHz
2 = 31 kHz
3 = 37 kHz
4 = 45 kHz

151

10.4.31. Set ultrasonic settings of the beacon

Write ultrasonic settings to specified beacon.

Function name: mm_set_ultrasound_settings
Declaration in C: bool mm_set_ultrasound_settings (uint8_t address, void *pdata);
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, ultrasonic settings were changed
false – error in execution

Parameters:
Type Description

uint8_t Address of the beacon (1…254)

void * Pointer to data to be written (see ‘get ultrasonic settings’ function).

https://marvelmind.com/product/mmsw0005/

152

10.4.32. Erase map

Erase map in modem – remove all submaps (except submap 0), reset submap 0 to initial state,
remove all connected beacons from network.

Function name: mm_erase_map
Declaration in C: bool mm_erase_map ();
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, map erased
false – error in execution

Parameters: none

https://marvelmind.com/product/mmsw0005/

153

10.4.33. Reset device to default settings

Reset device to default settings (radio, ultrasonic etc).

Function name: mm_set_default_settings
Declaration in C: bool mm_set_default_settings (uint8_t address);
Available for API versions: V1+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, device was reset to default settings
false – error in execution

Parameters:
Type Description

uint8_t Address of the device (1…254)
255 – reset to default the device connected via USB

https://marvelmind.com/product/mmsw0005/

154

10.4.34. Connect beacons to axes

Shift map so selected beacons will be on axes.

Function name: mm_beacons_to_axes
Declaration in C: bool mm_beacons_to_axes (uint8_t address_0, uint8_t address_x,
uint8_t address_y);
Available for API versions: V2+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, map shifted
false – error in execution

Parameters:
Type Description

uint8_t address_0 – address of beacon which should be in the center (X=0, Y=0)

uint8_t address_x – address of beacon which should be along X axis (Y= 0)

uint8_t address_y – address of beacon which should be in positive direction of Y (Y>0)

https://marvelmind.com/product/mmsw0005/

155

10.4.35. Read dump of modem’s configuration memory

Reads dump of modem’s configuration memory. Allows saving modem’s settings and stored
map.

Function name: mm_read_flash_dump
Declaration in C: bool mm_read_flash_dump(uint32_t offset, uint32_t size, void
*pdata);

Available for API versions: V3+
License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed, dump was read
false – error in execution

Parameters:

Type Description

uint32_t offset – offset from start of configuration memory, bytes

uint32_t size – size of data to read, bytes

void * pdata – pointer to user’s buffer for receiving data

https://marvelmind.com/product/mmsw0005/

156

10.4.36. Write dump of modem’s configuration memory

Write data dump to modem’s configuration memory. Allows to restore modem’s settings and
map.

Function name: mm_write_flash_dump

Declaration in C: bool mm_write_flash_dump(uint32_t offset, uint32_t size, void
*pdata);

Available for API versions: V3+

License required: MMSW0005

Returned value:
Type Description

bool true – function successfully executed, dump was written
false – error in execution

Parameters:

Type Description

uint32_t offset – offset from start of configuration memory, bytes
For correct operation offset should be aligned to 4096 bytes page
(value 0, 4096, 8192 and so on).

uint32_t size – size of data to write, bytes

void * pdata – pointer to user’s buffer with data

Note: After writing the configuration, software reset of the modem (mm_reset_device(255)) is
recommended to apply new settings and prevent overwriting them.

https://marvelmind.com/product/mmsw0005/

157

10.4.37. Restart (soft reset) of the device

Executes software reset for specified device.

Function name: mm_reset_device

Declaration in C: bool mm_reset_device (uint8_t address);

Available for API versions: V3+

License required: none

Returned value:
Type Description

bool true – function successfully executed, device is resetting
false – error in execution

Parameters:

Type Description

uint8_t Address of the device (1…254)
255 –software reset for device connected via USB

158

10.4.38. Read temperature of air setting from modem

Reads temperature of air setting (in Celsius degrees) from modem.

Function name: mm_get_air_temperature

Declaration in C: bool mm_get_air_temperature (void *pdata);

Available for API versions: V3+

License required: none

Returned value:
Type Description

bool true – function successfully executed, temperature is returned
false – error in execution

Structure of data returned via pdata pointer:

Type Description

int8_t Temperature of air, Celsius degrees

159

10.4.39. Write temperature of air setting to modem

Setup temperature of air setting (in Celsius degrees) in modem.

Function name: mm_set_air_temperature

Declaration in C: bool mm_set_air_temperature (void *pdata);

Available for API versions: V3+

License required: none

Returned value:
Type Description

bool true – function successfully executed, temperature was written
false – error in execution

Structure of data which user should supply via pdata pointer:

Type Description

int8_t Temperature of air, Celsius degrees

160

10.4.40. Get beacon real-time player settings

Reads real-time player settings for the beacon.

Function name: mm_get_realtime_player_settings

Declaration in C: bool mm_get_realtime_player_settings (uint8_t address, void *pdata);

Available for API versions: V6+

License required: none

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address - address of the beacon (1…254)

void * pdata - pointer to data to be filled

Structure of data returned via pointer:

Type Description

bool true = real-time player is enabled

uint8_t Number of real-time player forward samples to process

uint8_t Number of real-time player backward samples to process

uint8_t Reserved (0)

uint8_t Reserved (0)

161

10.4.41. Set beacon real-time player settings

Setup real-time player settings for the beacon.

Function name: mm_set_realtime_player_settings

Declaration in C: bool mm_set_realtime_player_settings (uint8_t address, void *pdata);

Available for API versions: V6+

License required: MMSW0005

Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address - address of the beacon (1…254)

void * pdata - pointer to data to write (see ‘Get beacon real-time player
settings’ function)

https://marvelmind.com/product/mmsw0005/

162

10.4.42. Get georeferencing settings

Reads georeferencing settings (geo location of point (X=0 ,Y=0) of Marvelmind map).

Function name: mm_get_georeferencing_settings

Declaration in C: bool mm_get_georeferencing_settings (void *pdata);

Available for API versions: V6+

License required: none

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to be filled

Structure of data returned via pointer:

Type Description

int32_t Latitude, x10-7 degrees

int32_t Longitude, x10-7 degrees

163

10.4.43. Set georeferencing settings

Setup georeferencing settings (geo location of point (X=0 ,Y=0) of Marvelmind map).

Function name: mm_set_georeferencing_settings

Declaration in C: bool mm_set_georeferencing_settings (void *pdata);

Available for API versions: V6+

License required: MMSW0005

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to write (see ‘Get georeferencing settings’
function)

https://marvelmind.com/product/mmsw0005/

164

10.4.44. Get mode of updating positions

Reads current mode of updating positions of mobile beacons.

Function name: mm_get_update_position_mode

Declaration in C: bool mm_get_update_position_mode (void *pdata);

Available for API versions: V6+

License required: none

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Mode of updating positions of mobile beacons:
0 – auto update positions (default mode)
1 – update positions by user request at next update cycle
2 – update positions by user request immediately

7 bytes Reserved (0)

165

10.4.45. Set mode of updating positions

Setup mode of updating positions of mobile beacons.

Function name: mm_set_update_position_mode

Declaration in C: bool mm_set_update_position_mode (void *pdata);

Available for API versions: V6+

License required: MMSW0005

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to write (see function ‘Get mode of updating
positions’)

https://marvelmind.com/product/mmsw0005/

166

10.4.46. Command to update positions

Send command to update positions of mobile beacons (if update mode is not automatic).

Function name: mm_set_update_position_command

Declaration in C: bool mm_set_update_position_command (void *pdata);

Available for API versions: V6+

License required: MMSW0005

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

8 bytes Reserved (0)

https://marvelmind.com/product/mmsw0005/

167

10.4.47. Set geofencing alarm state for the beacon

Send command to setup alarm state on the beacon’s alarm pin (for Super-Beacon).

Alarm state of the pin can be specified via ‘Alarm pin mode’ setting in the ‘Interfaces’ section of
settings in the dashboard (if MMSW0006 license is activated).

Function name: mm_set_alarm_state

Declaration in C: bool mm_set_alarm_state (uint8_t address, void *pdata);

Available for API versions: V9+

License required: MMSW0005, MMSW0006

Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address - address of the beacon (1…254)

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

uint8_t Alarm pin mode:
0 – pin is automatically controlled according to geofencing status
1 – pin is manually controlled – no alarm state
2 – pin is manually controlled – alarm state

uint8_t Geofencing zone index – number of geofencing zone which beacon will
stream out in the alarm state

6 bytes Reserved (0)

https://marvelmind.com/product/mmsw0006/
https://marvelmind.com/product/mmsw0005/
https://marvelmind.com/product/mmsw0006/

168

10.4.48. Send generic user payload data

Sends generic user payload data. If the API is connected to the modem, data will be transmitted
via UART/USB port of the specified mobile beacon. If the API is connected to the mobile beacon,
data will be transmitted via UART/USB port of the modem. Received data are available on the
remote side by receiving API function, Arduino examples, ROS and other software.

Function name: mm_send_user_payload_data

Declaration in C: bool mm_send_user_payload_data (uint8_t address, void *pdata);

Available for API versions: V9+

License required: MMSW0005

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address - address of the beacon (1…254) if the API is connected to modem
 n/a if the API is connected to the beacon

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

uint8_t Size of data to transmit

256 bytes Generic data buffer to transmit

https://marvelmind.com/product/mmsw0005/

169

10.4.49. Get generic user payload data

Receives generic user payload data, sent by transmitting API function, Arduino, ROS or other
user software. If the API is connected to the modem, this function can receive data transmitted
via UART/USB port of the mobile beacon. If the API is connected to the mobile beacon, this
function can receive data transmitted via the modem.

Function name: mm_get_user_payload_data

Declaration in C: bool mm_get_user_payload_data (void *pdata);

Available for API versions: V9+

License required: MMSW0005

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to receive

Structure of received data by pointer:

Type Description

uint8_t address – address of the beacon

int64_t Timestamp of data transmission – number of milliseconds from
01.01.1970 (Unix time)

uint8_t Size of data to transmit

256 bytes Buffer of received data

https://marvelmind.com/product/mmsw0005/

170

10.4.50. Send command for manual distances measurement

Sends command for measurement distances from specified beacon to other beacons in the
system. In current version of software supported in IA (Inverse architecture).

Function name: mm_send_distances_measurement_command

Declaration in C: bool mm_send_distances_measurement_command (void *pdata);

Available for API versions: V9+

License required: MMSW0011

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to send

Structure of data by pointer:

Type Description

uint8_t Mode:
0 – auto
1 – manual (by this command)

uint8_t Address of the beacon

uint32_t Maximum distance to measure, mm

8 bytes Reserved

https://marvelmind.com/product/mmsw0011/

171

10.4.51. Get streaming data from modem

Reads modem’s streaming data in the previously described format.

Function name: mm_get_stream_data

Declaration in C: bool mm_get_stream_data (void *pdata);

Available for API versions: V9+

License required: none

Returned value:
Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

void * pdata - pointer to data to send

Structure of data by pointer:

Type Description

uint8_t Number of stream records in this reply (0…16)

138*16
bytes

16 streaming records by 138 bytes (see below)

8 bytes Reserved

Structure of stream record:

Type Description

uint8_t Record size, bytes

uint8_t Record type. Same value as ‘line type’ in the dashboard log file.
For example, 41 means Marvelmind protocol data

8 bytes Reserved

128 bytes Stream record data

172

10.4.52. Check whether device type is modem

Checks whether the specified device type corresponds to modem.

Function name: mm_device_is_modem
Declaration in C: bool mm_device_is_modem (uint8_t deviceType);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – specified device type corresponds to modem

Parameters:
Type Description

uint8_t Device type to check

173

10.4.53. Check whether device type is stationary beacon

Checks whether the specified device type corresponds to stationary beacon.

Function name: mm_device_is_beacon
Declaration in C: bool mm_device_is_beacon (uint8_t deviceType);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – specified device type corresponds to stationary beacon

Parameters:
Type Description

uint8_t Device type to check

174

10.4.54. Check whether device type is hedgehog

Checks whether the specified device type corresponds to hedgehog.

Function name: mm_device_is_hedgehog
Declaration in C: bool mm_device_is_hedgehog (uint8_t deviceType);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – specified device type corresponds to hedgehog

Parameters:
Type Description

uint8_t Device type to check

175

10.5. Description of C example for Marvelmind API

C example is used for testing of Marvelmind API and can be used as basis for building of user
application.

The C example is the console application. It was tested on following platforms:

 CPU: Intel Core 2 Duo, OS: MS Windows XP;

 CPU: Intel Core i5, OS: Linux Ubuntu 16.04;

 Raspberry Pi 3 Model B+, OS: Raspbian (2018-11-13-raspbian-stretch-full)

On the Windows platform the example was built with CodeBlocks IDE and so the example
includes CodeBlocks project file.

On the Linux platforms, the example was built with using make utility and so the example
includes makefile for this.

The example includes following modules:

File name Description

main.c Module with main () function. Calls of functions of example and implements
simple command line interface.

marvelmind_example.c
marvelmind_example.h

marvelmindStart() – initialization of the example
marvelmindFinish() – called after finishing work with API
marvelmindCycle() – frequently called from main loop

Also, module includes several function for processing commands entered by
user.

marvelmind_api.c
marvelmind_api.h

marvelmindAPILoad() – loads API library
marvelmindAPIFree() – frees memory used by API library
All functions of communication with API library.

marvelmind_devices.c
marvelmind_devices.h

Supports list of beacons retrieved from modem by calling ‘get devices list’
command. Each beacon includes data about its location and distances to other
beacons.

marvelmind_pos.c
marvelmind_pos.h

Reads latest location data and latest raw distances. Updates these data in the
devices list.

marvelmind_utils.c
marvelmind_utils.h

Some helper functions used by other modules.

How the example works:

1. Try to open serial port until success
2. When port is opened, the program reads version of device connected via USB. If this is

modem, the program continues to execute next steps
3. When connected to modem, the program reads the devices list with 1 Hz rate. The

devices list is compared with currently stored in marvelmind_devices.c module and the
list in marvelmind_devices.c is updated, if any changes are detected. All changes are
printed in console

4. When connected to modem, the program reads the latest location data with 20 Hz
rate. If the flag of new raw distances data is set, the program reads latest raw
distances. The program compares locations and distances with data in devices list in
marvelmind_devices.c and updates the data if they are changed. All changed data are
printed in console

5. If the program can’t get latest location data for 10 times, it closes the port and returns
to step 1 – tries to open the port again. Reopening of the port is needed for cases when
modem was disconnected and connected back to USB

176

6. If user press ‘space’ button, the program shows ‘Enter command: ‘ message and waits
for user command. Most of API functions are called by user command, see below for
details

User commands:

If user press ‘space’ button when program is running, the program shows message ‘Enter
command: ‘. User should type command on keyboard and press enter.

The table below contains format of all user commands:

Commands group Description

API version Format of command:
version
Action:
Prints version of API library

Exit from program Format of command:
quit
Action:
Finishes program execution

Sleep/wake Format of command:
wake <address>
Action:
Execute wake command.
Examples:
wake 5 - send command to wake device 5
wake 0 - send command to wake all devices

Format of command:
sleep <address>
Action:
Execute sending to sleep command.
Examples:
sleep 5 - send to sleep device 5
sleep 0 - send to sleep all devices

Default Format of command:
default <address>
Action:
Execute reset to default settings command.
Examples:
default 5 - set default settings for device 5

Read telemetry Format of command:
tele <address>
Action:
Reads and prints telemetry data of beacon.
Examples:
tele 5 - read and print telemetry of beacon 5

Submap commands Format of command:
submap add <submapId>
Action:
Execute command to add submap with specified submap ID.
Example:
submap add 1 - add submap 1

177

Format of command:
submap delete <submapId>
Action:
Execute command to delete submap with specified submap
ID.
Example:
submap delete 1 - delete submap 1

Format of command:
submap freeze <submapId>
Action:
Execute command to freeze submap with specified submap
ID.
Example:
submap freeze 0 - freeze submap 0

Format of command:
submap unfreeze <submapId>
Action:
Execute command to unfreeze submap with specified submap
ID.
Example:
submap unfreeze 0 - unfreeze submap 0

Format of command:
submap get <submapId>
Action:
Execute command to get settings of submap with specified
submap ID.
Example:
submap get 0 - get and print settings of submap 0

Format of command:
submap testset <submapId>
Action:
Execute command to set settings of submap with specified
submap ID. The program writes some predefined settings for
testing of the command; please see the example code.
Example:
submap testset 0 - modify settings of submap 0

Map commands Format of command:
map erase
Action:
Execute erase map command.
Example:
map erase - erase map in modem

Format of command:
map freeze
Action:
Execute freeze map command.
Example:

178

map freeze - freeze map

Format of command:
map unfreeze
Action:
Execute unfreeze map command.
Example:
map unfreeze - unfreeze map

Update rate commands Format of command:
rate get
Action:
Execute reading update rate setting command.
Example:
rate get - read and print update rate setting

Format of command:
rate set <value>
Action:
Execute change update rate setting command. Value is given
in Hz
Example:
rate set 0.5 - set update rate 0.5 Hz

Ultrasound commands Format of command:
usound get <address>
Action:
Execute reading ultrasonic settings for specified beacon.
Example:
usound get 5 - read and print ultrasound settings of
beacon 5

Format of command:
usound testset <address>
Action:
Execute writing ultrasonic settings for specified beacon. The
program writes some predefined settings for testing of the
command; please see the example code.
Example:
usound testset 5 - modify ultrasound settings of
beacon 5

Connect to axes command Format of command:
axes <address_0> <address_x> <address_y>
Action:
Execute connect beacons to axes command..
Example:
axes 3 4 5 - set beacon 3 to X=0, Y=0; beacon 4 along
X (Y=0) and beacon 5 above X (Y>0)

179

Read configuration memory
dump from modem

Format of command:
read_dump <offset> <size>
Action:
Execute read dump of modem configuration memory
command.
Example:
read_dump 0 1000 - read first 1000 bytes from
beginning of configuration memory

Write configuration memory
test dump to modem

Format of command:
write_dump_test <offset> <size>
Action:
Execute write dump of modem configuration memory
command.
Example:
write_dump_test 0 1000 - fills first 1000 bytes from
beginning of configuration memory by test pattern

Software reset of device Format of command:
reset <address>
Action:
Execute software reset command.
Example:
reset 255 - executes software reset for device
connected via USB

Temperature of air commands Format of command:
temperature get
Action:
Execute reading temperature of air setting from modem
Example:
temperature get read and print ultrasound
temperature of air setting

 Format of command:
temperature set <value>
Action:
Execute writing temperature of air setting to modem
Example:
temperature set 30 setup temperature of air setting to
30 Celsius degrees

Set location of beacon Format of command:
setloc <address> <X > <Y > <Z>
Action:
Execute set location of the beacon command. X, Y, Z are
coordinates in meters.
Example:
setloc 12 1.51 3.45 2.0 - sets location of beacon 12 to X=
1.51 m, Y= 3.45 m, Z= 2.0 m

180

Set distance between beacons Format of command:
setdist <address1> <address2 > <distance>
Action:
Execute set distance between beacons command. Address1
and address2 are addresses of beacons. Distance is distance in
meters.
Example:
setdist 12 13 16.5 - sets distance between beacons 12 and
13 to 16.5 meters

Heights commands Format of command:
height_h get <address>
Action:
Execute get hedge height command. Address is the address of
the hedgehog.
Example:
height_h get 15 - reads and prints height of hedgehog 15

Format of command:
height_h set <address> <height>
Action:
Execute set hedge height command. Address is the address of
the hedgehog. Height in meters
Example:
height_h set 15 2.5 - setup height of hedgehog 15 to 2.5
meters

Format of command:
height_b get <address> <submap_id>
Action:
Execute get stationary beacon height command. Address is
the address of the beacon. Submap_id is ID of submap where
beacon belongs.
Example:
height_b get 12 0 - reads and prints height of stationary
beacon 12 in submap 0.

Format of command:
height_b set <address> <submap_id> <height>
Action:
Execute set stationary beacon height command. Address is
the address of the hedgehog. Submap_id is ID of submap
where beacon belongs. Height in meters
Example:
height_b set 12 0 5.1 - setup height of beacon 12 in
submap 0 to 5.1 meters

Real-time player commands Format of command:
rtp get <address>
Action:
Execute get real-time player settings command. Address is the
address of the beacon.
Example:

181

rtp get 15 - reads and prints real-time player settings of
beacon 15

Format of command:
rtp testset <address>
Action:
Execute set real-time player settings command. Address is the
address of the beacon. The program writes some predefined
settings for testing of the command; please see the example
code.

Example:
rtp testset 15 - setup test real-time player settings for
beacon 15

Georeferencing commands Format of command:
georef get
Action:
Execute get georeferencing settings command.
Example:
georef get - reads and prints georeferencing settings

Format of command:
georef set <latitude> <longitude>
Action:
Execute set georeferencing settings command.
Example:
georef set 10 20 – write georeferencing 10 degrees latitude,
20 degrees longitude

Update mode commands Format of command:
update_mode get
Action:
Execute get positions update mode command.
Example:
update_mode get - reads and prints positions update
mode

Format of command:
update_mode set <mode>
Action:
Execute set positions update mode command.
Example:
update_mode set 0 - set automatic mode of positions
update

Format of command:
update
Action:
Execute update positions command.
Example:
update - update positions of mobile beacons according to
current mode

Set geofencing alarm state Format of command:
alarm <address> <mode> <zone>
Action:
Execute set geofencing alarm state command.
Example:

182

alarm 10 2 5 - set geofencing alarm signal on the beacon
n10 with geofencing zone number 5

User payload commands Format of command:
payload read <address>
Action:
Execute get user payload data command.
Example:
payload read - read user payload from any beacon/modem
Example:
payload read 10 - read user payload from beacon n10

Format of command:
payload write <address>
Action:
Execute send user payload data command.
Example:
payload write 10 - write test payload data to beacon n10
Test pattern is 40 bytes started from 100: 100,101,…, 139

Manual distance
measurement command

Format of command:
distance <manual/auto> <address> <max distance>
Action:
Execute manual distance measurement command.
Example:
distance manual 10 5 – measure distances from beacon 10 to
others, maximum distance 5 meters
Example:
distance manual 10 – measure distances from beacon 10 to
others, maximum distance 30 meters (default)
Example:
distance auto - return to automatic distances
measurement mode

183

10.6. Device types

Here is the list of ‘Device type ID’ values for specific devices:

Device type ID Device description

22 Beacon HW V4.5

23 Beacon HW V4.5 (hedgehog mode)

24 Modem HW V4.9

30 Beacon HW V4.9

31 Beacon HW V4.9 (hedgehog mode)

32 Beacon Mini-RX

36 Beacon Mini-TX

37 Beacon-TX-IP67

41 Beacon industrial-RX

42 Super-Beacon

43 Super-Beacon (hedgehog mode)

44 Industrial Super-Beacon

45 Industrial Super-Beacon (hedgehog mode)

46 Super-Modem

48 Modem HW V5.1

You can get device type id from devices list and reading device version commands.

184

11. Sending user data from/to user devices

Marvelmind supports different ways for transmission user data through Marvelmind system:

- transmit data via UART or USB of the modem and receive via UART or USB from the mobile
beacon

- transmit data via UART or USB of the mobile beacon and receive via UART or USB of the
modem.

Super-Modem also supports transmission and receiving user data via UDP.

The protocols of the data transmission are described in previous sections of this document:

- protocol of transmission data to user device and from user device;

- API function for transmission and receiving data.

Marvelmind provides different examples of software for the communication:

Examples Arduino
(UART)

PC / Raspberry Pi (USB) PC / raspberry Pi
(UDP Super-Modem)

API C Python ROS/ROS2 C example

User device  beacon + + + + + n/a

Modem  User device + + + + + +

User device  beacon + + - - + n/a

Modem  User device + + - - + +

The full list of the examples:

- Arduino examples for sending and receiving user data are placed in the Marvelmind software
package in folder ‘01_Common_Indoor_positioning_SW/ 06_Examples/ arduino’.
‘hedgehog_sample_uart_user_data_receive_v2’ is for receiving user data,
‘hedgehog_sample_uart_user_data_send_v2’ is for sending user data

- API communication example is placed in the Marvelmind software package in folder
‘01_Common_Indoor_positioning_SW/ 05_API/example_source’ (source code) and
‘01_Common_Indoor_positioning_SW/ 05_API/example_bin_win32’ (binary for Windows).
Data transmission or receiving can be called as described in this document.

- C example for receiving of the streaming data is placed in the Marvelmind software package
in folder ‘01_Common_Indoor_positioning_SW/ 06_Examples/ c’. Also this example is
available in the repository on the GitHub. This example simply prints all data received from
mobile beacon or modem, including user data.

- Python example for receiving of the streaming data is placed in the Marvelmind software
package in folder ‘01_Common_Indoor_positioning_SW/ 06_Examples/ python’. Also this
example is available in the repository on the GitHub. This example simply prints all data
received from mobile beacon or modem, including user data.

- ROS package example for receiving of the streaming data is placed in the Marvelmind
software package in folder ‘01_Common_Indoor_positioning_SW/ 06_Examples/ ROS. Also
this package is available in the repository. The ROS package allows to receive user data
and send user data through the API. See documentation for the details.

- ROS-2 package example for receiving of the streaming data is placed in the Marvelmind
software package in folder ‘01_Common_Indoor_positioning_SW/ 06_Examples/ ROS2.
Also this package is available in the repository. The ROS package allows to receive user
data and send user data through the API. See documentation for the details.

https://github.com/MarvelmindRobotics/marvelmind.c
https://github.com/MarvelmindRobotics/marvelmind.py
https://bitbucket.org/marvelmind_robotics/ros_marvelmind_package/src/master/
https://marvelmind.com/pics/marvelmind_ROS.pdf
https://github.com/MarvelmindRobotics/marvelmind_ros2_upstream
https://marvelmind.com/downloads/marvelmind_ROS2.pdf

185

- C example for receiving data via UDP is placed in the Marvelmind software package in folder
‘01_Common_Indoor_positioning_SW/ 06_Examples/ c’. This example simply prints all data
received via UDP from Super-Modem or Dashboard, including user data. Sending user data
via UDP can be done via API if API is used for connection to the Super-Modem via UDP
instead USB.

186

12. Contacts

For additional support, please send your questions to info@marvelmind.com

mailto:info@marvelmind.com

187

Appendix 1. Calculating CRC-16

For checksum the CRC-16 is used. Last two bytes of N-bytes frame are filled with CRC-16, applied
to first (N-2) bytes of frame. To check data, you can apply CRC-16 to all frame of N bytes, the
result value should be zero.

Below is the implementation of the algorithm in the 'C':

typedef uint16_t ModbusCrc;

typedef union {

 uint16_t w;

 struct{

 uint8_t lo;

 uint8_t hi;

 } b;

 uint8_t bs[2];

} Bytes;

static ModbusCrc modbusCalcCrc(const void *buf, uint16_t length)

{

 uint8_t *arr = (uint8_t *)buf;

 Bytes crc;

 crc.w = 0xffff;

 while(length--){

 char i;

 bool odd;

 crc.b.lo ^= *arr++;

 for(i = 0; i< 8; i++){

 odd = crc.w& 0x01;

 crc.w>>= 1;

 if (odd)

 crc.w ^= 0xa001;

 }

 }

 return (ModbusCrc) crc.w;

}

188

Appendix 2. Format of error reply from modem

Format of error frame (from modem to host)
Offset Size (bytes) Type Description Value

0 1 uint8_t Address of modem 0xff

1 1 uint8_t Type of packet

2 1 uint8_t Code of error

3 2 uint16_t CRC-16 (see appendix 1)

Type of the error packet is the type of packet for the request frame with added high bit. For
example, if type of packet for request is 0x03, the type of error packet will be 0x83.
Code of error may be one of following:

1 – unknown type of packet in request
2 – unknown code of data in request
3 – error in data field of request
6 – device is busy
10 – error message from remote device
11 – timeout of reply from remote device

