

Communication with Marvelmind devices using ROS

(Robot Operating System).
Version 2020.05.28

Marvelmind supplies ROS package marvelmind_nav, which is able to communicate with mobile beacon or

modem and provide received location and other data. We have released and tested latest version of the

package for ROS Melodic (under Ubuntu 18.04) and ROS Noetic (under Ubuntu 20.04). The ROS package is

also available in source repository by link:

https://bitbucket.org/marvelmind_robotics/ros_marvelmind_package

To install the package in the ROS system from source, at first create catkin workspace as described here:

http://wiki.ros.org/catkin/Tutorials/create_a_workspace

Then create the directory for the package by executing commands in the terminal:

 $ cd ~/catkin_ws/src

 $ mkdir marvelmind_nav

Then copy downloaded sources from the repository into the created directory.

Before running the software from the package, you should execute following command from the

'catkin_ws' directory:

 $ source devel/setup.bash

After this, you can build and install Marvelmind ROS package: execute from ‘catkin_ws’ directory:

 $ catkin_make

 $ catkin_make install

Now we are ready to run the software, but before it we need to prepare the marvelmind system.

Use another PC with dashboard software to build map as described in the operating manual:

http://marvelmind.com/pics/marvelmind_navigation_system_manual.pdf

 Then connect the mobile beacon (hedgehog) by the USB cable to the USB port of your ROS machine.

Execute command in terminal to find the virtual serial port used by the hedgehog:

 $ ls /dev/ttyACM*

In most cases, the hedgehog connects to "/dev/ttyACM0", this port is used by default in the Marvelmind

ROS software. If no ports found by this command, try another one:

 $ ls /dev/ttyUSB*

Before running Marvelmind ROS software, run the ROS server in separate terminal:

 $ roscore

Then run the node 'hedge_rcv_bin' for receiving data from hedgehog as shown on following screenshot.

Note the parameter of the running program is '/dev/ttyACM1', the name of virtual serial port detected by

previous command. If the port is '/dev/ttyACM0', this parameter can be skipped.

In second command line parameter you can specify baudrate of the serial port, for example:

hedge_rcv_bin /dev/ttyACM1 115200. For connection via USB it doesn’t mean anything but with

connection via UART it should correspond to mobile beacon (or modem) baudrate setting.

You can get message like ‘unable to open serial connection’ even if the serial port is present. This may

mean you have no permissions to access this port. You can get all permissions by command ‘sudo chmod

0777 /dev/ttyACM0’. But you will lose the permissions after next reboot. For permanent permissions you

can add user to dialout group as described here: https://askubuntu.com/questions/58119/changing-

permissions-on-serial-port

If the node successfully receives data from hedgehog, it outputs the location data to the terminal as

shown on screenshot:

First value in square brackets is a ROS timestamp, then hedgehog timestamp in milliseconds, time (in

milliseconds) between position samples, coordinates X,Y,Z in meters, and byte of flags.

The node 'hedge_rcv_bin' works as ROS publisher, it sends the message with location data to the topics

named 'hedge_pos', ‘hedge_pos_a’ and ‘hedge_pos_ang’.

‘hedge_pos_ang’ is most new version of the topic; it includes address of mobile beacon and orientation

angle of paired beacons.

Following table lists all topics and data available via these topics:

Topic Message field Type Description

hedge_pos_ang address uint8 Address of mobile beacon

timestamp_ms uint32 Timestamp of location, milliseconds

x_m float64 X coordinate, meters

y_m float64 Y coordinate, meters

z_m float64 Z coordinate, meters

flags uint8 flags of location

angle float64 Orientation angle of paired beacons, degrees

beacon_pos_a address uint8 Address of stationary beacon

x_m float64 X coordinate, meters

y_m float64 Y coordinate, meters

z_m float64 Z coordinate, meters

beacon_distance address_hedge uint8 Address of mobile beacon

 address_beacon uint8 Address of stationary beacon

 distance_m float64 Raw distance from mobile to stationary beacon,

meters

hedge_imu_fusion timestamp_ms int64 Timestamp of IMU fusion data, milliseconds

x_m float64 (X,Y,Z) coordinates of mobile beacon by IMU

fusion. meters.

y_m float64

z_m float64

qw float64 Orientation quaternion of mobile beacon

(qw,qx,qy,qz). Normalized (qw2+qx2+qy2+qz2=1) qx float64

qy float64

qz float64

vx float64 (vx, vy, vz) – speed vector of mobile beacon

calculated by IMU fusion, meters/s vy float64

vz float64

ax float64 (ax, ay, az) – acceleration of mobile beacon

meters/s2 ay float64

az float64

hedge_imu_raw timestamp_ms int64 Timestamp of raw IMU data, milliseconds

acc_x int16 (acc_x, acc_y, acc_z) – raw accelerometer data,

1 mg/LSB acc_y int16

acc_z int16

gyro_x int16 (gyro_x, gyro_y, gyro_z) – raw gyroscope data,

0.0175 dps/LSB gyro_y int16

gyro_z int16

compass_x int16 (compass_x, compass_y, compass_z) – raw

compass data (only for HW4.9 beacons).

X,Y: 1100 LSB/Gauss

Z: 980 LSB/Gauss

compass_y int16

compass_z int16

hedge_quality address uint8 Address of the mobile beacon beacon

quality_percents uint8 Quality of location, percents

hedge_telemetry battery_voltage float64 Battery voltage of the mobile beacon, volts

rssi_dbm int8 RSSI (radio signal strength), dBm

marvelmind_waypoint total_items uint8 Total number of waypoint program items (N)

 item_index uint8 Index of this waypoint item (0…N-1)

 movement_type uint8 Type of action (6 = move to specified point)

 param1 int16 Parameter 1 (depends from movement_type)

X coordinate of waypoint, cm if type= 6

 param2 int16 Parameter 2 (depends from movement_type)

Y coordinate of waypoint, cm if type= 6

 param3 int16 Parameter 3 (depends from movement_type)

Z coordinate of waypoint, cm if type= 6

The package also contains another node 'subscriber_test', which is working as ROS subscriber and

receiving data from all the topics. This node can be used for test purposes and as basis for user software.

Run the 'subscriber_test' node in separate terminal as shown on following screenshot:

The running 'subscriber_test' node outputs to the terminal received location data from the topic

'/hedge_pos' as shown on the next screenshot:

In addition this node works as publisher and sends data to topic "visualization_marker". This allows to

view the position in the standard ROS software 'rviz'.

Run the 'rviz' in separate terminal as shown on screenshot:

The GUI window, shown on the next screenshot, should appear.

To see the hedgehog, make sure the 'Fixed frame' parameter has value 'my_frame', and the marker

'visualization marker' is connected.

The next screenshot shows the dashboard window on another computer with system, used for the

described above testing of ROS.

