

Marvelmind API manual
Version 2020.04.02

Product overview

Marvelmind API library is used by Marvelmind Dashboard software and provides interface to user’s software.
API is coming as dynamic-link library (DLL) for MS Windows and shared library for Linux (x86 and ARM
platforms).

In addition to the API library, the package includes C example software, which was used for testing of the API
and includes calls of all API functions.
The example can be used as a basis for developing of a user’s software and for porting API library interface (file
‘marvelmind_api.c’) to other programming languages.

Tested on:

1. MS Windows XP; CPU: Intel Core 2 Duo
2. Ubuntu 16.04; CPU: Intel Core i5 3.1 GHz
3. Raspbian (2018-11-13-raspbian-stretch-full); Platform: Raspberry Pi 3 Model B+

Installation for Windows

- Download Marvelmind API software package. Copy Dashboard API and example software to directory
that you will use for the program. Beacons the Windows version of the example is coming with prebuilt
executable file, you can immediately run ‘mm_api_example.exe’ from the ‘windows’ directory coming
in API software package.

Installation for Linux

- Download Marvelmind API software package. Copy Dashboard API to directory that you will use for the
program. Note the Linux version is provided for two hardware platforms: x86 (most of laptops based
on Intel or AMD CPU) and arm (for example, single-board computers like Raspberry PI)

- Copy library libdashapi.so corresponding to your platform to the directory /usr/local/lib by executing
command sudo cp libdashapi.so /usr/local/lib in terminal opened in directory with libdashapi.so.
After that, execute sudo ldconfig in terminal.

- May be, you will need to give rights for your user to access serial port by adding him to dialout group:

 Execute in terminal: sudo adduser $USER dialout

 Add to the directory /etc/udev/rules.d file “99-tty.rules” with following content:
#Marvelmind serial port rules
KERNEL==”ttyACM0”,GROUP=”dialout”,MODE=”666”

- Build the example software – execute ‘make all’ in terminal opened in ‘source’ directory coming with
the package

- Run the example by typing ‘./mm_api_example’ in terminal

Check connection to API

After running example software, press “space” button in terminal, type command ‘version’ and press enter. If
the example software prints version of API, it can communicate with API library.

1. Marvelmind API library description

API is coming as dynamic-link library (DLL) for MS Windows and shared library for Linux (x86 and ARM
platforms). The library includes set of functions for monitoring and controlling Marvelmind system via modem
connected to USB port of the computer. This section of document contains description of all these functions.

To provide more compatibility with different programming languages, most of complex data structures are
passing via untyped pointers to memory. Functions description include offset of every data field in the memory
pool. In the file ‘marvelmind_api.c’ from the example software you can see implementation of moving data
between memory pools and fields in C structures.

Types of parameters in the description are shown in C syntax. Here is description of the types:

Type Size (bytes) Description

bool 1 Boolean type. Zero means false, non-zero means true

uint8_t 1 Unsigned integer value, 0…255

int8_t 1 Signed integer value in two’s complement format , -128…127

uint16_t 2 Unsigned integer value, 0…65535

int16_t 2 Signed integer value in two’s complement format , -32768…32767

uint32_t 4 Unsigned integer value, 0…4294967295

int32_t 4 Signed integer value in two’s complement format ,
-2147483648…2147483647

void * 4/8 Memory pointer (address in memory).
4 bytes for 32-bit platforms, 8 bytes for 64-bit platforms.

Each function description includes set of API versions where this function is available. New API versions will
support more functions for new features in Marvelmind system. Now not all features available in Dashboard
are available via API, so if you need more API functions please ask to info@marvelmind.com.

mailto:info@marvelmind.com

List of supported functions:

Function API versions

Get version of Marvelmind API library V1+

Try to open serial port V1+

Try to open serial port by given name V2+

Close serial port V1+

Get version and CPU ID of Marvelmind device V1+

Get list of devices V1+

Wake device V1+

Send device to sleep V1+

Get telemetry data from beacon V1+

Get latest location data V1+

Get latest location data (with angle) V3+

Set location of the beacon V3+

Get latest raw distances data V1+

Get location update rate setting V1+

Set location update rate setting V1+

Add submap V1+

Delete submap V1+

Freeze submap V1+

Unfreeze submap V1+

Get submap settings V1+

Set submap settings V1+

Get ultrasonic settings of the beacon V1+

Set ultrasonic settings of the beacon V1+

Erase map V1+

Reset device to default settings V1+

Connect beacons to axes V2+

Read modem’s configuration memory dump V3+

Write modem’s configuration memory dump V3+

Get temperature of air setting from modem V3+

Set temperature of air setting in modem V3+

Software reset of the device V3+

Check if the device type is modem V1+

Check if the device type is beacon V1+

Check if the device type is hedgehog V1+

1.1. Get version of Marvelmind API library

Reads version of the API library. Required to ensure the needed functions are available in this version of library.

Function name: mm_api_version
Declaration in C: bool mm_api_version(void *pdata);
Available for API versions: V1+

Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:
Type Description

void * Pointer to data to be filled

Structure of data returned via pointer.

Type Description

uint32_t Version of API library

1.2. Open serial port

Opens port where Marvelmind device (modem or beacon) is connected via USB (virtual serial port). You don’t
need to specify serial port name, because the API searching all serial ports and checks whether it corresponds
to Marvelmind device or no.

Function name: mm_open_port
Declaration in C: bool mm_open_port ();
Available for API versions: V1+

Returned value:

Type Description

bool true – function successfully executed, port is opened
false – error in execution

Parameters: none

1.3. Open serial port by given name

Opens port where Marvelmind device (modem or beacon) is connected via USB (virtual serial port). Function
tries to open port with specified name.

Function name: mm_open_port_by_name
Declaration in C: bool mm_open_port_by_name();
Available for API versions: V2+

Returned value:

Type Description

bool true – function successfully executed, port is opened
false – error in execution

Parameters:
Type Description

void * Pointer to serial portname – sequence of ASCII characters terminated by zero (ASCIIZ)

1.4. Close serial port

Closes port, if it was previously opened by mm_open_port function.
Function name: mm_close_port
Declaration in C: bool mm_close_port ();
Available for API versions: V1+

Returned value:

Type Description

bool true – function successfully executed, port is closed
false – error in execution

Parameters: none

1.5. Get version and CPU ID of Marvelmind device

Reads version and CPU ID. Version includes information about firmware version and type of device hardware.
CPU ID is the unique ID of the device item.

Function name: mm_get_device_version_and_id
Declaration in C: bool mm_get_device_version_and_id (uint8_t address, void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, version and CPU ID data retrieved
false – error in execution

Parameters:
Type Description

uint8_t Address of Marvelmind device (1…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Major version of firmware (example: “6”, for version V6.07a)

uint8_t Minor version of firmware (example: “7”, for version V6.07a)

uint8_t Second minor version of firmware (example: “1”, for version V6.07a)

uint8_t Device type ID (see appendix).

uint8_t Firmware options (TBD).

uint32_t CPU ID. Printing this value as hexadecimal gives CPU ID in form shown in dashboard and
on the stickers on devices.

1.6. Get list of devices

Reads list of Marvelmind devices known to modem. The list includes list of all devices connected by radio to
modem’s network, including sleeping devices.

Function name: mm_get_devices_list
Declaration in C: bool mm_get_devices_list (void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, list of devices is retrieved
false – error in execution

Parameters:
Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Number of following devices in the list (N)

N*9 bytes Sequence of N devices structures, described in next table

Structure of each device in the list:

Type Description

uint8_t Address of device

bool true = duplicated address - more than 1 device with same address was found
false = not duplicated address

bool true = device is sleeping
false = device not sleeping

uint8_t Major version of firmware (example: “6”, for version V6.07a)

uint8_t Minor version of firmware (example: “7”, for version V6.07a)

uint8_t Second minor version of firmware (example: “1”, for version V6.07a)

uint8_t Device type ID (see appendix).

uint8_t Firmware options (TBD).

uint8_t Flags:
Bit 0: 1 – device connection complete – device has confirmed connection
 0 – waiting for confirmation from device (like ‘Connecting…’ in dashboard).
Bit 1…7 - TBD

1.7. Wake device

Sends command to wake specified device. If wake command was sent and such device is exist, the device will
connect to modem in several seconds and will appear in devices list.

Function name: mm_wake_device
Declaration in C: bool mm_wake_device (uint8_t address);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, wake command was sent
false – error in execution

Parameters:
Type Description

uint8_t 1…254 - address of Marvelmind device to wake
0 – wake all devices

1.8. Send device to sleep

Send to sleep existing device.

Function name: mm_send_to_sleep_device
Declaration in C: bool mm_send_to_sleep_device (uint8_t address);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, sleep command was sent
false – error in execution

Parameters:
Type Description

uint8_t 1…254 - address of Marvelmind device to sleep
0 – send to sleep all devices

1.9. Get telemetry data from beacon

Reads telemetry data of Marvelmind beacon.

Function name: mm_get_beacon_telemetry
Declaration in C: bool mm_get_beacon_telemetry (uint8_t address, void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, telemetry is retrieved
false – error in execution

Parameters:
Type Description

uint8_t Address of Marvelmind beacon (1…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint32_t Working time of the beacon, seconds (time from reset or waking up).

int8_t RSSI, dBm – radio signal strength

int8_t Measured temperature, °C

uint16_t Supply voltage, mV

16 bytes Reserved (0)

1.10. Get latest location data

Reads latest updated coordinates pack from modem. Also reads user payload data if available.

Function name: mm_get_last_locations
Declaration in C: bool mm_get_last_locations(void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, location data was retrieved
false – error in execution

Parameters:
Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

18*6 bytes 6 18-byte data structures of last updated coordinates, see table below

bool true – new raw distances are available to read

5 bytes TBD

uint8_t User payload data size (M)

M bytes User payload data

Structure of each location data item:

Type Description

uint8_t Address of device (1…254)
0 - this data item is not filled

uint8_t Head index (TBD)

int32_t X coordinate, mm

int32_t Y coordinate, mm

int32_t Z coordinate, mm

uint8_t Status flags (TBD)

uint8_t Quality of positioning, 0…100%

uint8_t TBD

uint8_t TBD

1.11. Get latest location data (with angle)

Reads latest updated coordinates pack from modem (with angle for paired beacons). Also reads user payload
data if available.

Function name: mm_get_last_locations2
Declaration in C: bool mm_get_last_locations2(void *pdata);
Available for API versions: V3+

Returned value:
Type Description

bool true – function successfully executed, location data was retrieved
false – error in execution

Parameters:
Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

20*6 bytes 6 20-byte data structures of last updated coordinates, see table below

bool true – new raw distances are available to read

5 bytes TBD

uint8_t User payload data size (M)

M bytes User payload data

Structure of each location data item:

Type Description

uint8_t Address of device (1…254)
0 - this data item is not filled

uint8_t Head index (TBD)

int32_t X coordinate, mm

int32_t Y coordinate, mm

int32_t Z coordinate, mm

uint8_t Status flags (TBD)

uint8_t Quality of positioning, 0…100%

uint8_t TBD

uint8_t TBD

uint16_t Bit 0…11 – angle of rotation in 1/10 degree (if paired beacons feature is enabled)
Bit 12 – 1 = angle not available
Bit 13…15 - reserved

1.12. Set location of the beacon

Manual setup of location of the specified beacon.

Function name: mm_set_beacon_location
Declaration in C: bool mm_set_beacon_location (uint8_t address, void *pdata);
Available for API versions: V3+

Returned value:
Type Description

bool true – function successfully executed, location is updated
false – error in execution

Parameters:
Type Description

uint8_t Address of the beacon

void * Pointer to buffer with location data

Structure of data by pointer (should be filled before function call):

Type Description

int32_t New X coordinate of the beacon, mm

int32_t New Y coordinate of the beacon, mm

int32_t New Z coordinate of the beacon, mm

1.13. Get latest raw distances data

Reads latest updated raw distances pack from modem.

Function name: mm_get_last_distances
Declaration in C: bool mm_get_last_distances(void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, raw distances data was retrieved
false – error in execution

Parameters:
Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Number of raw distances data items (N).
Maximum number of raw distances per request is 16: N<=16

9*N bytes N 9-byte data structures of last raw distances, see table below

Structure of each raw distance data item:

Type Description

uint8_t Address of ultrasonic RX device (1…254)
0 - this data item is not filled

uint8_t RX Head index (TBD)

uint8_t Address of ultrasonic TX device (1…254)
0 - this data item is not filled

uint8_t TX Head index (TBD)

uint32_t Distance from TX device to RX device, mm

uint8_t TBD

1.14. Get location update rate setting

Reads location update rate setting from modem.

Function name: mm_get_update_rate_setting
Declaration in C: bool mm_get_update_rate_setting (void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, update rate was retrieved
false – error in execution

Parameters:
Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint32_t Location update rate setting in mHz. So 1000 is returned for 1 Hz, 16000 for 16 Hz, 50
for 0.05 Hz mode.

1.15. Set location update rate setting

Writes location update rate setting to modem.

Function name: mm_set_update_rate_setting
Declaration in C: bool mm_set_update_rate_setting (void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, update rate was changed
false – error in execution

Parameters:
Type Description

void * Pointer to data

Structure of data by pointer (should be filled before function call):

Type Description

uint32_t Location update rate setting in mHz. So 1000 is returned for 1 Hz, 16000 for 16 Hz, 50
for 0.05 Hz mode. The system will use most close to specified update rate from the
series: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5Hz, 1 Hz, 2 Hz, 4 Hz, 8 Hz, 12 Hz, 16 Hz, 16+Hz.

1.16. Add submap

Adds new submap.

Function name: mm_add_submap
Declaration in C: bool mm_add_submap (uint8_t submapId);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, submap was added
false – error in execution

Parameters:
Type Description

uint8_t Submap ID to add (0…254)

1.17. Delete submap

Delete existing submap.

Function name: mm_delete_submap
Declaration in C: bool mm_delete_submap (uint8_t submapId);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, submap was removed
false – error in execution

Parameters:
Type Description

uint8_t Submap ID to delete (0…254)

1.18. Freeze submap

Freezes submap.

Function name: mm_freeze_submap
Declaration in C: bool mm_freeze_submap (uint8_t submapId);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, submap is frozen
false – error in execution

Parameters:
Type Description

uint8_t Submap ID to freeze (0…254)

1.19. Unfreeze submap

Unfreezes submap.

Function name: mm_unfreeze_submap
Declaration in C: bool mm_unfreeze_submap (uint8_t submapId);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, submap is unfrozen
false – error in execution

Parameters:
Type Description

uint8_t Submap ID to unfreeze (0…254)

1.20. Get submap settings

Reads submap settings from modem.

Function name: mm_get_submap_settings
Declaration in C: bool mm_get_submap_settings (uint8_t submapId , void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, submap settings were retrieved
false – error in execution

Parameters:
Type Description

uint8_t Submap ID (0…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Starting beacon trilateration

uint8_t Starting set of beacons, beacon 1

uint8_t Starting set of beacons, beacon 2

uint8_t Starting set of beacons, beacon 3

uint8_t Starting set of beacons, beacon 4

bool true = 3D navigation enabled

bool true = Submap is used only for Z coordinate

bool true = manual limitation distance
false = auto limitation distance

uint8_t Maximum distance, meters (for manual limitation distances)

int16_t Submap X shift, cm

int16_t Submap Y shift, cm

int16_t Submap Z shift, cm

uint16_t Submap rotation, centidegrees

int16_t Plane rotation quaternion, W (quaternion is normalized to 10000)

int16_t Plane rotation quaternion, X

int16_t Plane rotation quaternion, Y

int16_t Plane rotation quaternion, Z

int16_t Service zone thickness, cm

int16_t Hedges height in 2D mode

bool true = submap is frozen

bool true = submap is locked

bool true = stationary beacons are higher than mobile

bool true = submap is mirrored

4 bytes List of addresses of beacons in submap (0 = none)

8 bytes List of ID’s of nearby submaps (255 = none)

uint8_t Number of service zone polygon points (P)

P*4 bytes List of service zone polygon points structures (see below)

Structure of service zone polygon point:

Type Description

int16_t X, cm

int16_t Y, cm

1.21. Set submap settings

Writes submap settings to modem.

Function name: mm_set_submap_settings
Declaration in C: bool mm_set_submap_settings (uint8_t submapId , void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, submap settings were changed
false – error in execution

Parameters:
Type Description

uint8_t Submap ID (0…254)

void * Pointer to data to be written (see ‘get submap settings’ function).

1.22. Get ultrasonic settings of the beacon

Reads ultrasonic settings from specified beacon.

Function name: mm_get_ultrasound_settings
Declaration in C: bool mm_get_ultrasound_settings (uint8_t address , void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, ultrasonic settings were retrieved
false – error in execution

Parameters:
Type Description

uint8_t Address of the beacon (1…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint16_t Frequency of ultrasound TX (not relevant for DSP RX-only beacons)

uint8_t Number of TX periods (not relevant for DSP RX-only beacons)

bool true= use AGC for RX
false = manual gain for RX

uint16_t Manual gain value (0…4000)

bool true = Sensor RX1 is enabled in normal mode

bool true = Sensor RX2 is enabled in normal mode

bool true = Sensor RX3 is enabled in normal mode

bool true = Sensor RX4 is enabled in normal mode

bool true = Sensor RX5 is enabled in normal mode

bool true = Sensor RX1 is enabled in frozen mode

bool true = Sensor RX2 is enabled in frozen mode

bool true = Sensor RX3 is enabled in frozen mode

bool true = Sensor RX4 is enabled in frozen mode

bool true = Sensor RX5 is enabled in frozen mode

uint8_t Index of DSP RX filter (relevant only for DSP beacons)
0 = 19 kHz
1 = 25 kHz
2 = 31 kHz
3 = 37 kHz
4 = 45 kHz
5 = 56 kHz

1.23. Set ultrasonic settings of the beacon

Write ultrasonic settings to specified beacon.

Function name: mm_set_ultrasound_settings
Declaration in C: bool mm_set_ultrasound_settings (uint8_t address , void *pdata);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, ultrasonic settings were changed
false – error in execution

Parameters:
Type Description

uint8_t Address of the beacon (1…254)

void * Pointer to data to be written (see ‘get ultrasonic settings’ function).

1.24. Erase map

Erase map in modem – remove all submaps (except submap 0), reset submap 0 to initial state, remove all
connected beacons from network.

Function name: mm_erase_map
Declaration in C: bool mm_erase_map ();
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, map erased
false – error in execution

Parameters: none

1.25. Reset device to default settings

Reset device to default settings (radio, ultrasonic etc).

Function name: mm_set_default_settings
Declaration in C: bool mm_set_default_settings (uint8_t address);
Available for API versions: V1+

Returned value:
Type Description

bool true – function successfully executed, device was reset to default settings
false – error in execution

Parameters:
Type Description

uint8_t Address of the device (1…254)
255 – reset to default the device connected via USB

1.26. Connect beacons to axes

Shift map so selected beacons will be on axes.

Function name: mm_beacons_to_axes
Declaration in C: bool mm_beacons_to_axes (void *pdata);

Available for API versions: V2+

Returned value:
Type Description

bool true – function successfully executed, map shifted
false – error in execution

Structure of data by pointer:
Type Description

uint8_t address_0 – address of beacon which should be in the center (X=0, Y=0)

uint8_t address_x – address of beacon which should be along X axis (Y= 0)

uint8_t address_y – address of beacon which should be in positive direction of Y (Y>0)

1.27. Read dump of modem’s configuration memory

Reads dump of modem’s configuration memory. Allows saving modem’s settings and stored map.

Function name: mm_read_flash_dump
Declaration in C: bool mm_read_flash_dump(uint32_t offset, uint32_t size, void *pdata);

Available for API versions: V3+

Returned value:
Type Description

bool true – function successfully executed, map shifted
false – error in execution

Parameters:
Type Description

uint32_t offset – offset from start of configuration memory, bytes

uint32_t size – size of data to read, bytes

void * pdata – pointer to user’s buffer for receiving data

1.28. Write dump of modem’s configuration memory

Write data dump to modem’s configuration memory. Allows to restore modem’s settings and map.

Function name: mm_write_flash_dump
Declaration in C: bool mm_write_flash_dump(uint32_t offset, uint32_t size, void *pdata);

Available for API versions: V3+

Returned value:
Type Description

bool true – function successfully executed, map shifted
false – error in execution

Parameters:
Type Description

uint32_t offset – offset from start of configuration memory, bytes
For correct operation offset should be aligned to 4096 bytes page (value 0, 4096, 8192
and so on).

uint32_t size – size of data to write, bytes

void * pdata – pointer to user’s buffer with data

Note: After writing the configuration, software reset of the modem (mm_reset_device(255)) is recommended
to apply new settings and prevent overwriting them.

1.29. Restart (soft reset) of the device

Executes software reset for specified device.

Function name: mm_reset_device
Declaration in C: bool mm_reset_device (uint8_t address);

Available for API versions: V3+

Returned value:
Type Description

bool true – function successfully executed, device is resetting
false – error in execution

Parameters:
Type Description

uint8_t Address of the device (1…254)
255 –software reset for device connected via USB

1.30. Read temperature of air setting from modem

Reads temperature of air setting (in Celsius degrees) from modem.

Function name: mm_get_air_temperature
Declaration in C: bool mm_get_air_temperature (void *pdata);

Available for API versions: V3+

Returned value:
Type Description

bool true – function successfully executed, temperature is returned
false – error in execution

Structure of data returned via pdata pointer:

Type Description

int8_t Temperature of air, Celsius degrees

1.31. Write temperature of air setting to modem

Setup temperature of air setting (in Celsius degrees) in modem.

Function name: mm_set_air_temperature
Declaration in C: bool mm_set_air_temperature (void *pdata);

Available for API versions: V3+

Returned value:
Type Description

bool true – function successfully executed, temperature was written
false – error in execution

Structure of data which user should supply via pdata pointer:

Type Description

int8_t Temperature of air, Celsius degrees

1.32. Check whether device type is modem

Checks whether the specified device type corresponds to modem.

Function name: mm_device_is_modem
Declaration in C: bool mm_device_is_modem (uint8_t deviceType);
Available for API versions: V1+

Returned value:
Type Description

bool true – specified device type corresponds to modem

Parameters:
Type Description

uint8_t Device type to check

1.33. Check whether device type is beacon

Checks whether the specified device type corresponds to beacon.

Function name: mm_device_is_beacon
Declaration in C: bool mm_device_is_beacon (uint8_t deviceType);
Available for API versions: V1+

Returned value:
Type Description

bool true – specified device type corresponds to beacon

Parameters:
Type Description

uint8_t Device type to check

1.34. Check whether device type is hedgehog

Checks whether the specified device type corresponds to hedgehog.

Function name: mm_device_is_hedgehog
Declaration in C: bool mm_device_is_hedgehog (uint8_t deviceType);
Available for API versions: V1+

Returned value:
Type Description

bool true – specified device type corresponds to hedgehog

Parameters:
Type Description

uint8_t Device type to check

2. Description of C example for Marvelmind API

C example is used for testing of Marvelmind API and can be used as basis for building of user application.
The C example is the console application. It was tested on following platforms:

 CPU: Intel Core 2 Duo, OS: MS Windows XP;

 CPU: Intel Core i5, OS: Linux Ubuntu 16.04;

 Raspberry Pi 3 Model B+, OS: Raspbian (2018-11-13-raspbian-stretch-full)
On the Windows platform the example was built with CodeBlocks IDE and so the example includes CodeBlocks
project file.

On the Linux platforms, the example was built with using make utility and so the example includes makefile for
this.

The example includes following modules:

File name Description

main.c Module with main() function. Calls of functions of example and
implements simple command line interface.

marvelmind_example.c
marvelmind_example.h

marvelmindStart() – initialization of the example
marvelmindFinish() – called after finishing work with API
marvelmindCycle() – frequently called from main loop

Also module includes several function for processing commands entered
by user.

marvelmind_api.c
marvelmind_api.h

marvelmindAPILoad() – loads API library
marvelmindAPIFree() – frees memory used by API library
All functions of communication with API library.

marvelmind_devices.c
marvelmind_devices.h

Supports list of beacons retrieved from modem by calling ‘get devices list’
command. Each beacon includes data about its location and distances to
other beacons.

marvelmind_pos.c
marvelmind_pos.h

Reads latest location data and latest raw distances. Updates these data in
the devices list.

marvelmind_utils.c
marvelmind_utils.h

Some helper functions used by other modules.

How the example works:

1. Try to open serial port until success

2. When port is opened, the program reads version of device connected via USB. If this is modem, the
program continues to execute next steps

3. When connected to modem, the program reads the devices list with 1 Hz rate. The devices list is
compared with currently stored in marvelmind_devices.c module and the list in marvelmind_devices.c
is updated, if any changes are detected. All changes are printed in console

4. When connected to modem, the program reads the latest location data with 20 Hz rate. If the flag of
new raw distances data is set, the program reads latest raw distances. The program compares locations
and distances with data in devices list in marvelmind_devices.c and updates the data if they are
changed. All changed data are printed in console

5. If the program can’t get latest location data for 10 times, it closes the port and returns to step 1 – tries
to open the port again. Reopening of the port is needed for cases when modem was disconnected and
connected back to USB

6. If user press ‘space’ button, the program shows ‘Enter command: ‘ message and waits for user
command. Most of API functions are called by user command, see below for details

User commands:

If user press ‘space’ button when program is running, the program shows message ‘Enter command: ‘. User
should type command on keyboard and press enter.

The table below contains format of all user commands:

Commands group Description

API version Format of command:
version
Action:
Prints version of API library

Exit from program Format of command:
quit
Action:
Finishes program execution

Sleep/wake Format of command:
wake <address>
Action:
Execute wake command.
Examples:
wake 5 - send command to wake device 5
wake 0 - send command to wake all devices

Format of command:
sleep <address>
Action:
Execute sending to sleep command.
Examples:
sleep 5 - send to sleep device 5

sleep 0 - send to sleep all devices

Default Format of command:
default <address>
Action:
Execute reset to default settings command.
Examples:
default 5 - set default settings for device 5

Read telemetry Format of command:
tele <address>
Action:
Reads and prints telemetry data of beacon.

Examples:
tele 5 - read and print telemetry of beacon 5

Submap commands Format of command:
submap add <submapId>
Action:
Execute command to add submap with specified submap ID.
Example:
submap add 1 - add submap 1

Format of command:
submap delete <submapId>
Action:
Execute command to delete submap with specified submap ID.
Example:
submap delete 1 - delete submap 1

Format of command:
submap freeze <submapId>
Action:
Execute command to freeze submap with specified submap ID.
Example:
submap freeze 0 - freeze submap 0

Format of command:
submap unfreeze <submapId>
Action:
Execute command to unfreeze submap with specified submap ID.
Example:
submap unfreeze 0 - unfreeze submap 0

Format of command:
submap get <submapId>
Action:
Execute command to get settings of submap with specified submap ID.
Example:
submap get 0 - get and print settings of submap 0

Format of command:
submap testset <submapId>
Action:
Execute command to set settings of submap with specified submap ID. The
program writes some predefined settings for testing of the command; please see
the example code.
Example:
submap testset 0 - modify settings of submap 0

Map commands Format of command:
map erase
Action:

Execute erase map command.
Example:
map erase - erase map in modem

Update rate
commands

Format of command:
rate get
Action:
Execute reading update rate setting command.
Example:
rate get - read and print update rate setting

Format of command:
rate set <value>
Action:
Execute change update rate setting command. Value is given in Hz
Example:
rate set 0.5 - set update rate 0.5 Hz

Ultrasound
commands

Format of command:
usound get <address>
Action:
Execute reading ultrasonic settings for specified beacon.
Example:
usound get 5 - read and print ultrasound settings of beacon 5

Format of command:
usound testset <address>
Action:
Execute writing ultrasonic settings for specified beacon. The program writes some
predefined settings for testing of the command; please see the example code.
Example:
usound testset 5 - modify ultrasound settings of beacon 5

Connect to axes
command

Format of command:
axes <address_0> <address_x> <address_y>
Action:
Execute connect beacons to axes command..
Example:
axes 3 4 5 - set beacon 3 to X=0, Y=0; beacon 4 along X (Y=0) and beacon
5 above X (Y>0)

Read configuration
memory dump from
modem

Format of command:
read_dump <offset> <size>
Action:
Execute read dump of modem configuration memory command.
Example:
read_dump 0 1000 - read first 1000 bytes from beginning of
configuration memory

Write configuration
memory test dump
to modem

Format of command:
write_dump_test <offset> <size>
Action:
Execute write dump of modem configuration memory command.
Example:
write_dump_test 0 1000 - fills first 1000 bytes from beginning of
configuration memory by test pattern

Software reset of
device

Format of command:
reset <address>
Action:
Execute software reset command.
Example:
reset 255 - executes software reset for device connected via USB

Temperature of air
commands

Format of command:
temperature get
Action:
Execute reading temperature of air setting from modem
Example:
temperature get read and print ultrasound temperature of air setting

Format of command:
temperature set <value>
Action:
Execute writing temperature of air setting to modem
Example:
temperature set 30 setup temperature of air setting to 30 Celsius degrees

Set location of
beacon

Format of command:
setloc <address> <X > <Y > <Z>
Action:
Execute set location of the beacon command. X,Y,Z are coordinates in meters.
Example:
setloc 12 1.51 3.45 2.0 - sets location of beacon 12 to X= 1.51 m, Y= 3.45 m, Z=
2.0 m

Appendix 1. Device types

Here is the list of ‘Device type ID’ values for specific devices:

Device type ID Device description

22 Beacon HW V4.5

23 Beacon HW V4.5 (hedgehog mode)

24 Modem HW V4.9

30 Beacon HW V4.9

31 Beacon HW V4.9 (hedgehog mode)

32 Beacon Mini-RX

36 Beacon Mini-TX

37 Beacon-TX-IP67

41 Beacon industrial-RX

42 Super-Beacon

43 Super-Beacon (hedgehog mode)

44 Super-Beacon industrial

45 Super-Beacon industrial (hedgehog mode)

46 Super-Modem

You can get device type id from devices list and reading device version commands.

