# Non-Inverse Architecture (NIA)

Submaps:

coverage

#### **DSP Beacon 1**

### **Stationary beacons:**

- Mounted on walls or ceilings
- Users have to measure distances between stationary DSP beacons manually
- Communicate with router wirelessly in ISM band

#### DSP Beacon 2



Key requirement for the system to work well: unobstructed sight by a mobile beacon of 2 or more stationary beacons simultaneously (like in GPS)

#### Mobile beacon:

- Installed on robot and interacts with it via UART or SPI or I2C or USB
- Receives location update from router up to 45 times per second
- May contain IMU (accelerometer + gyroscope + compass module)

### Indoor Navigation System consists of:

2 or more DSP beacons

Advanced feature that allows building independent

thus covering large buildings (with area of thousands of m2) similar to cellular network

maps/clusters of beacons in separate rooms and

- 1 or more mobile beacons
- 1 central router



#### **Router/modem:**

- Central controller of the system
- Calculates position of mobile beacon up to 45 Hz
- Communicates via USB/virtual UART with Dashboard or robot



## Inverse Architecture (IA)



#### **Stationary beacons:**

- Mounted on walls or ceilings
- In inverse system beacons belonging to the same submap should have different ultrasound frequencies (19 & 25kHz or 25 & 31 kHz, for example)
- Communicate with router wirelessly in ISM band



Key requirement for the system to work: unobstructed line of hearing/sight by a mobile beacon to 2 or more stationary beacons simultaneously (like in GPS)





#### Mobile DSP beacon(s):

- Installed on robot (human) and interacts with it via virtual UART over USB
- Contains 3D IMU (accelerometer+gyroscope)
- Beacon's update rate doesn't directly depend on the number of mobile beacons unlike in Non-Inverse Architecture
- Calculates its location by itself not by modem
- Recommended distance from mobile beacon to stationary ones up to 30m

#### **Router/modem:**

- Central controller of the system
- Communicates via USB/virtual UART with Dashboard or robot
- Get location data from Mobile DSP beacons
- Supports up to 250 beacons

#### Submaps:

- Advanced feature that allows building independent maps/clusters of beacons in separate rooms and thus covering large buildings (with area of thousands of m2) similar to cellular network coverage
- In Inverse Architecture every submap must have beacons with non-repeating ultrasound frequency
- Available frequencies: 19, 25, 31, 37, 45, 56 KHz

Beacon N (19, 25, 31, 37, 45, 56 KHz)

) Distance between

Distance between beacons-neighbors is up to 30 meters.

Indoor Navigation System consists of:

- 2 or more stationary beacons
- 1 or more DSP beacons
- 1 central router



Marvelmind

robotics

### Architectures comparison

Version 2018\_11\_19

|                 | Non-Inverse (NIA)                                                                                                                                                                                                        | Inverse (IA)                                                                                                                                                                                                                                                                           |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Typical usage   | <ul> <li>1-4 autonomous robots/drones - supports up to 250 beacons</li> <li>When mobile beacon shall be installed on a noisy vehicle, but stationary beacons are in relatively quieter places</li> </ul>                 | <ul> <li>Many mobile users (people, robots, VR) - supports up to 250 beacons</li> <li>When mobile beacons are in quieter places</li> </ul>                                                                                                                                             |
| Not recommended | - In applications, where emitting ultrasound of mobile beacon is undesirable                                                                                                                                             | <ul> <li>For drones – because mobile beacon is receiving. The range may be limited to just</li> <li>2-5m. May be improved with future SW releases</li> </ul>                                                                                                                           |
| Precision       | - ±2cm or better with more averaging                                                                                                                                                                                     | <ul> <li>Targeted - ±2cm</li> <li>It will be on par with Non-Inverse Architecture, eventually. Currently, Non-Inverse SW is more polished, more stable and shows better precision than the Inverse one</li> </ul>                                                                      |
| Update rate     | <ul> <li>Depends on the number of mobile beacons (n) as 1/n –TDMA is used</li> <li>Slightly depends on the radio protocol</li> <li>Depends on the sizes of submaps</li> <li>IMU fusion is HW and SW supported</li> </ul> | <ul> <li>Does not depend on the number of mobile beacons, because they are receiving</li> <li>Slightly depends on the radio protocol (the same as NIA)</li> <li>Depends on the sizes of submaps (the same as NIA)</li> <li>IMU fusion is HW supported. SW support is coming</li> </ul> |
| Range           | <ul> <li>Can cover as large territory as you wish using submaps</li> <li>Up to 30m in real life and up to 50m in lab conditions within a submap, i.e. stationary beacons shall be placed every 30m or closer</li> </ul>  |                                                                                                                                                                                                                                                                                        |
| Map building    | <ul> <li>Can build a map automatically, if HW v4.9 beacons are used.</li> <li>Mini-beacons cannot build the map, because they are TX-only</li> </ul>                                                                     | <ul> <li>Manual entry of stationary beacons' location or distances between them is required</li> </ul>                                                                                                                                                                                 |

