
Planning and Control of Drift Maneuvers with the Berkeley Autonomous Race
Car

by

Jon Matthew Gonzales

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Mechanical Engineering

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Francesco Borrelli, Chair
Professor Mark Mueller
Professor Murat Arcak

Summer 2018

Planning and Control of Drift Maneuvers with the Berkeley Autonomous Race
Car

Copyright 2018
by

Jon Matthew Gonzales

1

Abstract

Planning and Control of Drift Maneuvers with the Berkeley Autonomous Race Car

by

Jon Matthew Gonzales

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

In competitive sporting events, drivers operate vehicles at the limits of handling, with near
full rear tire saturation. Expert drivers intentionally drift their vehicles around corners to
turn the vehicle quickly. These drivers operate their vehicles in a way that is contrary to the
way safety systems in automotive electronic control units are designed. By investigating and
understanding the physics and operating principles of these maneuvers, it may be possible
to enhance safety features in automotive control systems for collision avoidance, as well as
enable sports cars to autonomously perform drift within the context of racing. The main
focus of this dissertation is on planning and control of drift maneuvers, in particular, steady
state drift, drift parking, and drift cornering.

Secondly, with the growth of research and engineering in the domain of autonomous
vehicles, the dissertation also focuses on the design and development of a robotic platform
called the Berkeley Autonomous Race Car (BARC). The platform is based on a 1/10-scale
remote control vehicle equipped with computing hardware and a suite of sensors that make
it suitable for research and instruction. The project aims to provide a low-cost, open-
source testbed option for researchers and instructors interested in autonomous vehicles. The
methods and algorithms provided in the first part of the dissertation are experimentally
validated on the BARC platform.

i

To my family for all their love and support, and all others who have helped me throughout
this journey

ii

Contents

Contents ii

List of Figures iv

List of Tables ix

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Outline and Contributions . 3

2 Vehicle Models 6
2.1 Introduction . 6
2.2 Point-mass Model . 7
2.3 Kinematic Model . 8
2.4 Dynamic Models . 9
2.5 Model Fidelity . 25
2.6 Model Identification . 29
2.7 Equilibrium Analysis . 31
2.8 Conclusion . 50

3 Berkeley Autonomous Race Car 54
3.1 Platform Review . 55
3.2 Mechanical Components . 58
3.3 Electrical Components . 61
3.4 Power System Architecture . 71
3.5 Teaching Applications . 78
3.6 Conclusion . 79

4 Planning and Control of Drift Maneuvers 80
4.1 Autonomous Steady State Drifting . 80
4.2 Path Planning and Mixed Open-loop Closed-loop Control 99
4.3 Autonomous Drift Parking . 102
4.4 Autonomous Drift Cornering . 113

iii

4.5 Conclusion . 121

5 Conclusion 124

A Equilibrium Analysis 125

B Schematics 128

Bibliography 129

iv

List of Figures

1.1 Snapshot of drift maneuver at 2016 Midwest Drift Union event in Saint, Louis.
Image from [22] under Creative Common license 2

2.1 Coordinate system for vehicle motion. 7
2.2 Kinematic Bicycle Model. 9
2.3 The tire side slip measures the angle between the lateral and longitudinal com-

ponent of the tire velocity vector. 11
2.4 Longitudinal and lateral components of tire velocity in a four-wheel vehicle model. 11
2.5 The slip-ratio measures the amount of deformation along the rolling direction of

the tire. 14
2.6 During typical cornering, the total tire force, F ∗,∆, uses only a portion of the

available friction from the friction circle, while during extreme maneuvers, like
drifting, the tire force uses all the available friction. 15

2.7 The Pacejka tire model is characterized by coefficients that manipulate different
properties of the force curve, such as amplitude, curvature, and tail behavior. . . 17

2.8 The longitudinal and vertical components of the tire forces acting within the ev1-
ev3 plane generate a moment about the ev2 axis. The positive ev2 axis points into
the page. 20

2.9 The longitudinal and vertical components of the tire forces acting within the ev1-
ev3 plane generate a moment about the ev2 axis. The positive ev2 axis points into
the page . 23

2.10 The lateral and vertical components of the tire forces acting within the ev2-ev3
plane generate a moment about the ev1 axis. The positive ev1 axis points into the
page (i.e., we are facing the rear side of the vehicle). 23

2.11 The vertical deformation of the tires are balanced in the diagonal direction. . . . 24
2.12 All system models initially drive straight and then turn to the left and apply a

torque command to the motor. 26
2.13 The trajectories from the two-wheel (blue) and four-wheel (green) models both

diverge from the trajectory of the CarSim model (red) as the vehicle enters into
the drift maneuver. 27

v

2.14 The longitudinal velocity (blue), lateral velocity (red), and yaw rate (black) begin
to diverge significantly from the CarSim benchmark values as the vehicle initiates
the turning maneuver at t = 5 s. 28

2.15 The side slip angle β does not grow beyond a couple of degrees under normal
cornering conditions (black circled curve). Under rear tire saturation (blue and
red curves), the slip angles grow to large values. 33

2.16 The yaw rate r scales linearly with the magnitude of the steering angle under
typical cornering conditions (black circled curve). Under rear tire saturation
(blue and red curves), the yaw rate maintains a large value. 34

2.17 The front lateral force F f,eq
y scales linearly with the magnitude of the steering

angle under typical cornering conditions (black circled curve). Under drift condi-
tions (blue and red curves), the rear lateral force is saturated and the front lateral
force maintains a large value. 35

2.18 The rear lateral force F r,eq
y scales linearly with the magnitude of the steering angle

under typical cornering conditions (black circled curve). Under drift conditions
(blue and red curves), the rear lateral force is saturated. 36

2.19 The phase portrait illustrates three equilibria associated with the vehicle running
at vx = 1.20 [m/s] and δeq = -20.00 [deg]. The small, open, red circles at the
top and bottom of the plot indicate unstable drift equilibrium, and the diamond-
shaped red marker around at around (β = 0.04,r = −1.77) indicates a stable
equilibrium, or normal cornering condition. The black lines and blue arrows
indicate fields or how the system starting at any state within the space shown
would evolve. As expected, all systems would move toward the stable equilibrium
state. 40

2.20 The phase portrait illustrates three equilibria associated with the vehicle running
at vx = 1.20 [m/s] and δeq = +20.00 [deg]. The small, open, red circles at the
top and bottom of the plot indicate unstable drift equilibrium, and the diamond
shaped red marker around at around (β = 0.00,r = 1.69) indicates a stable
equilibrium, or normal cornering condition. The black lines and blue arrows
indicate fields or how the system starting at any state within the space shown
would evolve. As expected, the system moves toward the stable equilibrium state. 41

2.21 The side slip angle β does not grow beyond a couple of degrees under normal
cornering conditions (black circled curve). Under rear tire saturation (blue and
red curves), the slip angles grow to a large value. 43

2.22 The yaw rate r scales linearly with the magnitude of the steering angle under
typical cornering conditions (black circled curve). Under rear tire saturation
(blue and red curves), the yaw rate maintains a large value. 44

2.23 The rear longitudinal force F r
x scales quadratically with the steering angle under

cornering conditions. Under drift conditions (blue and red curves), the rear force
takes the maximum value possible available from friction, which scales approxi-
mately linearly with the steering angle. 45

vi

2.24 The rear lateral force F r,eq
y scales linearly with the magnitude of the steering angle

under typical cornering conditions (black circled curve). Under drift conditions
(blue and red curves), the rear lateral force is saturated and shares the total
available frictional force with the rear longitudinal force F r,eq

x 46
2.25 The total rear force under cornering conditions scales approximately linearly with

the steering angle. This result makes sense as the lateral force operates in the
linear region of the tire model. Under drift conditions (blue and red curves),
the rear tires are saturated for all steering angles, which results in the straight
horizontal line at the top at value (µF r

z). 47
2.26 Top: The diagram shows the tire forces acting on the vehicle over three time steps.

The blue arrows indicate the force vectors acting on each tire. The black arrow is
the velocity vector, and the angle between the dashed line and the velocity vector
is the slip angle β. Bottom: The bottom diagram shows the complete steady
state motion of the vehicle. Equilibrium values: veqx = 1.20 [m/s], βeq = 36.63
[deg], req = −79.99 [deg/s], δeq = 20 [deg], F r,eq

x = 1.5535 [N], F 2r,eq
y = −1.6587 [N]. 48

2.27 Top: The diagram shows the tire forces acting on the vehicle over three time steps.
The black arrow is the velocity vector, and the angle between the dashed line and
the velocity vector is the slip angle β. Bottom: The bottom diagram shows the
complete steady state motion of the vehicle. Equilibrium values: veqx = 1.20
[m/s], βeq = −36.63 [deg], req = 79.99 [deg/s], δeq = −20 [deg], F r,eq

x = 1.5535
[N], F r,eq

y = 1.6587 [N]. The equilibrium state represents a mirror opposite of the
state in Figure 2.26. 49

2.28 During drift conditions, the magnitude of the side slip angle β decreases as the
magnitude of the longitudinal velocity increases for all steering angles. 51

2.29 During drift conditions, the magnitude of the yaw rate r decreases as the magni-
tude of the longitudinal velocity increases for all steering angles. 52

2.30 During drift conditions, the magnitude of the rear longitudinal force F r
x decreases

as the magnitude of the longitudinal velocity increases for all steering angles. . 53

3.1 Berkeley Autonomous Race Car (BARC) - second generation. 55
3.2 Berkeley Autonomous Race Car (BARC) - first generation. 55
3.3 The RACECAR is an open-source platform from MIT. Image from [27] 56
3.4 The f1/10 is an open-source platform from Penn Engineering. Image from [8]. . 56
3.5 The AutoRally Robot is a testbed for perception and control from the Georgia

Institute of Technology. Image from [20]. 57
3.6 Donkey is an open source project for self-driving cars. Image from [34]. 57
3.7 Hamster is a small robust autonomous robot for research and prototype develop-

ment from Cogniteam. Image from [4]. 58
3.8 Top view of Traxxas Ford Fiesta ST Rally 1/10. 59
3.9 The Traxxas Ford Fiesta comes equipped with a Bushed DC motor and an Elec-

tronic Speed Control unit. 59

vii

3.10 Pulse Width Modulation can encode information or control power delivered to
electrical devices. From top to bottom, the PWM curves illustrate 25%, 50%,
and 75% duty cycles, respectively. The red dashed line shows the average voltage
value over the cycle. A higher duty cycle means more power is delivered to
connected devices. 61

3.11 Top view of the BARC chassis base plate. 62
3.12 The myAHRS+ (Altitude Heading Reference System) from HardKernel features

an accelerometer, gyroscope, and magnetometer. 63
3.13 The encoder unit consists of a QRE113 Reflective Object Sensor from SparkFun

that detects changes in changes from the encoder disk. 63
3.14 Velocity is computed by counting the number of switches between light and dark

partition over a fixed time interval, and then using geometric information of the
encoder unit. 64

3.15 The Ultrasonic Range Finder provides proximity measurements from zero to six
meters. 65

3.16 The Marvelmind GPS kit is designed to provide ±2 cm accuracy for indoor nav-
igation. 66

3.17 The ELP 2MP Monocular Camera can deliver 280 x 720 P images at 60 fps . . 67
3.18 The RP LiDAR A2 scans 360 deg with a distance range of 12 meters. 67
3.19 The ZyXEL router and Edimax Wi-Fi USB devices can both transmit data up

to 150 Mbps. 68
3.20 The Odroid XU-4 runs on an 8-core ARM Cortex processor. 69
3.21 The Arduino Nano features the ATmega328 microcontroller with an AVR archi-

tecture . 70
3.22 Traxxas 7.4V 10000 mA LiPo battery. 72
3.23 Dean . 73
3.24 XT60 . 73
3.25 Bullet . 73
3.26 EC family of connectors. 74
3.27 Traxxas . 74
3.28 Anderson power pole . 74
3.29 Traxxas-XT60 Adapter . 75
3.30 XT60 splice . 75
3.31 Tamiya connectors. 75
3.32 JST connector. 76
3.33 XHP-2 connector. 76
3.34 The Futaba cable is prevalent among low-powered actuators and sensors. 76
3.35 The Power distribution for BARC platform uses a single battery as the energy

source. 77
3.36 Voltage regulators output a stable direct current voltage independent of the input

voltage and current loads. 78

viii

4.1 Vehicle model schematic . 81
4.2 Equilibrium sideslip angle vs steering angle . 83
4.3 Equilibrium yaw rate vs steering angle. 83
4.4 Equilibrium rear wheel force vs steering angle. 83
4.5 The optimized frictional and input gain parameters accurately longitudinal dy-

namics of the RC. 85
4.6 The optimized tire model parameters from program (4.10) fit the experimental

data. The red and black asterisks represent tire forces estimated directly from
data using the dynamic equations, and the dashed blue line comes from the tire
model with optimized parameters and slip-angle estimates from data 87

4.7 The CarSim vehicle state converges to the reference state. 97
4.8 The CarSim vehicle input converges to the reference input. 97
4.9 The RC state oscillates about the reference state. 98
4.10 The RC state oscillates about the reference input. 98
4.11 The control commands for aggressive maneuvers like drift roughly take the form

of step functions that can easily by parameterized. 100
4.12 The vehicle has a low side-slip angle in the highlighted green segment and a

high-slip angle in the red segment. 104
4.13 The switched controller tracks the reference trajectory closely. The blue tra-

jectory denotes the reference trajectory. All other trajectories which track the
reference trajectory are denoted in red and green, which indicate when the control
operates under MPC and when it operates under the feedforward (FF) - feedback
(FB) control policy. 110

4.14 Applying a pure open-loop controller over a long time horizon fails to track the
reference trajectory. The blue trajectory denotes the reference trajectory and
the red trajectories are all experimental results from applying the same control
inputs as the reference trajectory in open-loop. 111

4.15 The frame-by-frame image shows the vehicles approaching, turning, and then
sliding into the parking spot between the boards during an experimental run. . . 112

4.16 Parametrized control sequence for drift cornering 115
4.17 Pure open loop control for the entire duration of the experiment results in poor

tracking behavior. 122
4.18 The mixed open-loop closed-loop control strategy consistently tracks the reference

trajectory. 123

ix

List of Tables

2.1 CarSim parameters . 25
2.2 RC-car parameters . 37

4.1 Offline procedure . 89
4.2 Online procedure . 89
4.3 RC-car parameters . 95
4.4 CarSim vehicle parameters . 96
4.5 Rule-based path planning algorithm . 116
4.6 Offline segment . 117
4.7 Online segment . 117
4.8 RC-car parameters . 121

x

Acknowledgments

I would like to thank my advisor, Francesco Borrelli, for his solid support and guidance
through my graduate studies at UC Berkeley. I am indebted to him for all his advice and
expertise, from academics to research projects to professional development. I am also very
grateful to the late Professor Karl Hedrick for his support and encouragement in my academic
endeavors. I would also like to thank Professor Mark Mueller and Professor Murat Arcak for
serving on my dissertation committee. I would also like to acknowledge Professor O’Reilly’s
taking me in during my first year at UC Berkeley.

The Model Predictive Control lab represents my academic family. I cherish the personal
and professional ties that I formed with the many members in the lab over the past several
years. I’m grateful to Ashwin Carvalho, Sarah Koehler, Frank Chuang and Theresa Lin for
welcoming me into the lab after I joined. I appreciate Tony Kelman for offering a ton of
advice on numerical optimization routines and on the Julia programming language. I’d like
to thank Ugo Rosolia, Charlott Vallon, Yeojun Kim, Jacopo Guanetti, Xiaojing (George)
Zhang, Monimoy Bujarbaruah, Andreas Hansen, Yi-Wen (Grace) Liao and the many others
of the MPC / VDL lab that have helped me along the way.

I would like to thank the leadership and engineers at Hyundai Motor Company for the
opportunity to consult on their project in autonomous driving and for providing funding to
support my graduate studies. Their engineers taught me a lot of the practical challenges of
instrumenting commercial vehicles with sensors and computing hardware, as well as imple-
menting advanced control and estimation techniques on OEM hardware.

I would like to acknowledge the support of UC Berkeley for the Chancellor’s fellowship
and GEM National Consortium for the GEM fellowship; any findings and conclusions herein
do not necessarily reflect their views.

I want to thank my friends from the International Graduate Student Ministry for pro-
viding an environment to grow spiritually and preserve through the difficult times during
graduate school.

Finally, I would like to thank my parents and sibling for all their love, support and
encouragement. My parents are exemplary role models and they continue to inspire me.

1

Chapter 1

Introduction

1.1 Motivation and Background

Planning and Control of drift maneuvers

Drift represents one of the most advanced, dangerous, and captivating maneuvers a skilled
driver can perform on a vehicle. It occurs when a driver intentionally oversteers a vehicle
and maintains control of it amid loss of traction in the wheels. Drifting is easily recognized
by three characteristic features: large side slip angles, rear tire saturation, and counter-steer.
Visually, a large side slip angle corresponds to lateral motion, or how much the vehicle is
moving ‘side ways’. Rear tire saturation means that the tires are generating the maximum
amount of force available from friction to propel the car forward. At this point, the vehicle is
said to be operating at the limits of handling. With saturated tires, pushing further down on
the throttle only causes the tires to slip more and smoke to come up from the tires’ rubbing
against the road. Lastly, counter-steer refers to the effect of steering the wheels in a direction
opposite to the rotation of the vehicle.

Drift occurs in competitive sporting contexts, like rally racing and performance demon-
strations. In rally racing, expert drivers skillfully execute a drift maneuver to turn sharp
90 deg to 180 deg corners quickly. For example, Ken Block, one of the world’s top rally racers,
masterfully drifts through the racetrack at l’Autodrome de Linas in France for a promotional
event in [35]. In performance demos, drivers showcase their handling abilities by sliding a
vehicle into a tight parking spot or performing a continuous drift. Han Yue set the world
record for the tightest parallel parking by sliding his vehicle into a space 15 cm longer than
the length of his vehicle [32]. These drivers operate their vehicles in a way that is contrary
to the way the safety system in automotive electronic control units are designed. By inves-
tigating and understanding the physics and operating principles of these maneuvers, it may
be possible to enhance safety features in automotive control systems for collision avoidance,
as well as enable sports cars to autonomously perform drift within the context of racing.

While drift represents a maneuver that is beyond the handling capabilities of the ordinary
driver, in some contexts, like drift parking and drift cornering, the actions an expert driver

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Snapshot of drift maneuver at 2016 Midwest Drift Union event in Saint, Louis.
Image from [22] under Creative Common license

executes to drift can often be described through simple, yet precisely timed control actions.
Secondly, over short time durations, vehicle systems that operate in open-loop (i.e. apply a
fixed sequence of input commands) from similar initial conditions behave deterministically,
and produce repeatable, predictable responses, even if the dynamics are complex and dif-
ficult to model. A big challenge for model-based control design of drift maneuvers lies in
using a sufficiently good mathematical model to capture the drift dynamics. The previous
observations suggest a way to incorporate open-loop operation as a part of a larger control
strategy for drift. The dissertation focuses on the ideas of sample-based path planning and
mixed open-loop, closed-loop control as a complete framework to perform autonomous drift
maneuvers. These ideas are verified from experimental results on drift parking and drift
cornering. A separate, related work on the control of steady state drift is included as well.

Robotic platform for autonomous driving

With the rise of autonomous vehicles, it is becoming more and more important to instruct
engineering students not only on how to develop control algorithms, but also to validate
them on a physical testbed through experimentation. While full-scale vehicles are the ideal
testbed to validate control algorithms for autonomous driving, they present challenges in
terms of safety and liability, as they can cause property damage and potential loss of human
life if the algorithms malfunction. Additionally, even if the proper safety mechanism in
software and hardware are designed, instrumented full-scale vehicles are not accessible to
many due to cost. While costs are declining for high-end sensors (e.g. LiDAR, RGB cameras,

CHAPTER 1. INTRODUCTION 3

RADAR, differential GPS, etc.), equipping a vehicle with the appropriate sensors, computing
hardware, cabling and acquiring legal authorization to test on roads represents a high barrier
to entry. As an alternative, small scale autonomous vehicles afford a much more practical
means to develop and test control algorithms.

Unfortunately, to the best of the author’s knowledge, on the market, there are no com-
mercial low-cost, small-scale platforms for research and development for self-driving cars.
Many of the existing products like Turtlebot [42], Magni [26], ROSbot [33], are all strong
platforms for mobile robotic development, but do not have a chassis construction or actua-
tion system that resembles that of a full-scale vehicle. A few research groups have developed
open-source platforms [27] [20] [8], but cost or difficulty of assembly present a hurdle for
others interested in replicating the platform.

To help bridge the gap for students and researchers between theory and practice, we
have developed an open-source, low-cost robotic platform for autonomous driving called
the Berkeley Autonomous Race Car (BARC). The platform is based on a 1/10-scale remote
control vehicle equipped with computing hardware and a suite of sensors that make it suitable
for research and instruction. The project aims to provide a low-cost, open-source testbed
option for researchers and instructors interested in autonomous vehicles. The second focus
of this dissertation is on the development of the BARC platform for research and instruction.

1.2 Outline and Contributions

This dissertation is organized thematically into three main chapters.
Mathematical models lie at the center of any model-based control algorithm. The first

part of Chapter Two provides an overview of vehicle and tire models for control. The focus
is on the underlying assumptions of each model and the trade-off between accuracy and
computational complexity, starting with kinematic models and progressing to four-wheel
vehicle models with tire models that account for both the slip angle and slip ratio. The next
segment of Chapter Two then discusses model identification using optimization programs.
These programs find the optimal vehicle parameters and tire model coefficients to fit the
mathematical models to the data. Lastly, Chapter Two concludes with an analysis of drift
at state steady. This analysis gives insight into the interplay between side slip angle, yaw
rate, and steering during drift.

Chapter Three gives an introduction to a 1/10-scale robotic platform the author devel-
oped called the Berkeley Autonomous Race Car (BARC). The platform aims to bring a
low-cost, open-source testbed to students, instructors, and researchers for testing control
algorithms for self-driving cars. The focus of the chapter is on the mechanical, electrical,
and software design decisions and development of the platform. The mechanical portions
touches on the chassis selection and the fabrication methods (e.g. water jet, fused deposition
modeling 3D printing) . The electrical segment discusses the sensor suite (e.g. encoders,
inertial measurement unit, camera, sonar, etc.) and the computing hardware. Other consid-
erations like power distribution and cabling are discussed as they impact the ease of assembly

CHAPTER 1. INTRODUCTION 4

and protection of onbaord electronic devices. The software section discusses the use of the
Robotic Operating System (ROS), open-source tools, and cloud services with BARC. Chap-
ter Three concludes by discussing how the platform has been integrated into an engineering
college curriculum to enrich the education of students by complementing theory with exper-
imentation.

Chapter Four discusses planning and control for three specific drifting maneuvers: steady
state drift, drift parking and drift cornering. This chapter ties in themes from Chapters Two
and Three by discussing planning and control techniques, and then applying them to the
BARC platform. The results from the equilibrium analysis in Chapter Two shape the design
of the control policy for steady state drift. The experimental implementation aims to use
only on-board sensors, including camera, encoders, and the inertia measurement unit, and
onboard computation for the BARC platform to achieve drift. For the topics of drift parking
and drift cornering, we discuss a path planning strategy and then a mixed open-loop, closed-
loop control scheme for conducting transient, complex drift maneuvers. The motivation for
mixed control stems from the observation that vehicle systems behave deterministically over
a short duration when operating in open-loop (i.e. fixed sequence of input commands) from
approximately the same initial condition, even if the dynamics are complex and difficult to
model.

The contributions of this dissertation are the following:

� Development of a Berkeley Autonomous Race Car (BARC) platform - 1/10 scale robot
for research and instruction for autonomous driving

� Co-development of curriculum for integrating BARC platform into college curriculum
in vehicle dynamics and control

� Sample-based path planning strategy for drift maneuvers

� LQR-based control design for steady state drifting

� Mixed open-loop, closed-loop control scheme for reference tracking with heuristic im-
plementation strategies for drift parking and drift cornering

The results presented in this dissertation have appeared in the following list of publica-
tions coauthored by the author of the dissertation:

– J. Gonzales, F. Zhang, K. Li, F. Borrelli. ”Autonomous Drifting with Onboard Sen-
sors”. In: 13th International Symposium on Advanced Vehicle Control, Munich. 2016

– F. Zhang, J. Gonzales, K. Li, F. Borrelli. ”Autonomous Drift Cornering with Mixed
Open-loop and Closed-loop Control” 20th World Congress of the International Feder-
ation of Automatic Control. 2017

– E. Jelavic, J. Gonzales, F. Borrelli. ”Autonomous Drift Parking using a Switched

CHAPTER 1. INTRODUCTION 5

Control Strategy with Onboard Sensors”. In: 20th World Congress of the International
Federation of Automatic Control. 2017

The author has discussed the BARC platform in the following workshops and talks:

– J. Gonzales, C. Vallon, T. Zheng, F. Borrelli. ”Autonomous Vehicles: An Open Plat-
form for Learning and Teaching” In: American Control Conference. Milwaukee, USA,
June 26, 2018

– J. Gonzales. ”Autonomous Driving for RC Cars with ROS and Julia” In: JuliaCon.
Boston, USA, June 23, 2016

6

Chapter 2

Vehicle Models

2.1 Introduction

At the heart of any model-based control algorithm lies the mathematical model of the system.
The purpose of the model is to capture the underlying physics and mathematically describe
how the system inputs effect the system outputs. For our purposes, these models take the
shape of differential equations or difference equations for the continuous and discrete system,
respectively. In the space of vehicle dynamics, these models serve primarily to capture system
states such as position, orientation and velocity. Vehicle models vary in terms of complexity
and fidelity, but at a high level, these models typically fall into one of the following three
categories:

� Point-mass models

� Kinematic models

� Dynamic models

This chapter provides an overview of the vehicle models widely used for Advanced Driving
Assistance Systems (ADAS) and chassis control systems. We will begin by describing the
basic assumptions and principles underlying each of the models, and then transform the
models into a state space representation.

Before moving forward, we first define the coordinate system used in each of the fol-
lowing models. We define a fixed global coordinate system with mutually orthogonal axes
{E1,E2,E3}. These axes form a right handed coordinate system, where E1,E2 lie on the road
surface and E3 points upward. We define the vehicle-fixed coordinate system {ev1, ev2, ev3},
where the ev1 axis points from the vehicle’s center of gravity (CoG) to the front of the vehicle,
the ev2 axis points from the CoG to the left of the vehicle, and ev3 points upward. Lastly, we

define the tire-fixed coordinate systems {et∗,∆1 , e
t∗,∆
2 , e

t∗,∆
3 }, where ∗ = {1 = front, 2 = rear}

and ∆ = {r = right, l = left}.

CHAPTER 2. VEHICLE MODELS 7

E1

E2
e
v

1

e
v

2

e
tfl

1

e
tfl

2

e
tfr

1

E3

e
tfr

2

e
trr

1

e
trl

1

e
trl

2

e
trr

2

Figure 2.1: Coordinate system for vehicle motion.

The e
t∗,∆
1 axis pointing from the tire contact patch along the direction of the tire, the

e
t∗,∆
2 axis pointing to the left of the tire and e

t∗,∆
3 pointing upward.

As we review various vehicle models, we describe kinematic quantities like velocity and
position in terms of either the global coordinate frame or the vehicle-fixed frame. Trans-
forming the vector quantities from one coordinate frame to another is done by multiplying
it by a rotation matrix.

2.2 Point-mass Model

We begin our survey of mathematical models with a simple point-mass description of the
vehicle. Point-mass models are the most basic system models that only consider kinematic
definitions of motion. The type of point mass model described here neglects angular dynam-

ics. The vehicle state is z =
[
x v

]>
, where x is the position coordinate and v is the speed,

and the input is u = a, where a is the acceleration. The point-mass model only captures
unidirectional motion, meaning the vehicle motion is only along a straight path (i.e. no
rotation).

Starting from the definition of acceleration a = dv
dt

and velocity v = dx
dt

, we arrange the
equations into the following state space representation

d

dt

[
x
v

]
=

[
0 1
0 0

] [
x
v

]
+

[
0
1

]
a (2.1)

CHAPTER 2. VEHICLE MODELS 8

The explicit equation for position as a function of time simply integrates the acceleration
twice. If constant acceleration is assumed, we arrive at the following expression for position

x = x0 + vt+
1

2
at2 (2.2)

For a few applications, like longitudinal control in ADAS systems, the basic point mass
model works sufficiently well, but does not work well for lateral controllers due to lateral
errors [2].

For the remainder of the chapter, we focus on other vehicle models, and we simply present
the point-mass model for completeness.

2.3 Kinematic Model

Next, we consider the kinematic vehicle model. Similar to the previous model, this model
only considers kinematic relations that govern the motion of the vehicle. Forces acting on
the vehicle are not considered. This model assumes the velocity vectors at the front and rear
wheels are in the direction of the front and rear tires, respectively. An equivalent statement
is that the tire side slip angles are zero. Such assumptions are reasonable for vehicles at low
speeds on high friction surfaces [31].

The kinematic motion only accounts for planar motion. The vehicle state and input are:

z =
[
X Y ψ a

]>
u =

[
δ a

]>
where (x, y) are the position coordinates of the vehicle in global coordinate frame, ψ is the
yaw angle (i.e. angle between vehicle heading and global X axis), δ is the steering angle
(define with respect to the body fixed coordinate system), and a is the acceleration.

The equations of motion for the kinematic model can be derived by taking into account
the instantaneous center of rotation and applying standard trigonometric identities [31]. The
kinematic model is described by following set of differential equations in the global reference
frame:

Ẋ = v cos(ψ + β) (2.3a)

Ẏ = v sin(ψ + β) (2.3b)

ψ̇ =
v

Lr
(2.3c)

v̇ = a (2.3d)

β = tan−1

(
Lr

Lf + Lr
tan(δf)

)
(2.3e)

CHAPTER 2. VEHICLE MODELS 9

E1

E2

e
v
1

e
v
2

E3

Lr

Lf

δv

β

Figure 2.2: Kinematic Bicycle Model.

where β is called the slip angle, Lf is the distance from the CoG to the front wheel axle
and Lr is the distance from the CoG to the rear wheel axle. We remark on two points. First,
we assume the rear tires are aligned with the ev1 axis. This simplification is not necessary, but
for this work, we only model vehicles with front wheel steering. Second, the kinematic bicycle
model, as the name suggests, simplifies the 4-wheeled vehicle into a bicycle by lumping the
front two tires into one and lumping the rear two tires into one. This assumes the front and
rear wheels point in the same direction and rotate at the same speed. Strictly speaking, this
assumption is not correct whenever the vehicle rotates, since the radius path of each wheel
is different. Nonetheless, the quantities are roughly equal, and thus, the lumped-tire bicycle
kinematic model describes the motion accurately enough for autonomous driving control
[24].

2.4 Dynamic Models

Models for vehicle dynamics incorporate two major components. First is the rigid body
model of the vehicle itself, and the forces acting on the contact patches. Second, and just as
important, is the tire model. For extreme maneuvers like drift, it is necessary to accurately
capture the effects of the tire forces in order to model the motion of the vehicle. We first
begin by examining a couple of common tire models in the literature, and then transition
into an overview of various vehicle model. Many of the vehicle models require an accurate
tire model, so it is better to treat the tire model first.

CHAPTER 2. VEHICLE MODELS 10

Tire Models

Tire models are a major subject of vehicle dynamics. Many works in vehicle dynamics have
been devoted into characterizing tire forces [28] [30] [11], but tire models still represent a
challenge because of the myriad of factors that affect the forces generated from them. Tires
vary in material composition and tread design, which affects elastic and thermal properties.
Additionally, tire wear and pressure inflation also influence how the tire behaves [15].

Many mathematical models have been developed for tire forces. They fall into either
physics-based or empirical-based models. Physics based tire models treat the tire as a spring
that generates a force due to material deformation. Empirical-based models, on the other
hand, simply fit a function with parameters to data. Both approaches have their merits.
Physics-based models provide insight for how physical parameters directly influence the tire
forces. Empirical-based models tend to predict the tire forces more accurately, but at the
expense of physical intuition. In related disciplines, these types of models are classified
as white, black, or gray-box models, depending on the level of clarity in the theoretical
structure. These models also vary in fidelity, from basic linear equations to complex, highly
nonlinear expressions with several parameters. Selecting an appropriate tire model depends
on the application.

In the following section, we will give an overview of common tire models for vehicle
dynamics and control.

Slip angle and slip ratio

In practice, the forces generated at each tire depend on several variables, including slip angle
α, slip ratio ω, the normal force Fz, the coefficient of friction µ, and the temperature of the
tire. The complexity of these high fidelity models is not conducive to system analysis and
control, so we will consider simplified tire models, where the lateral force Fy depends on the
side slip angle α and the longitudinal force Fx depends on the slip ratio σ.

We begin with modeling lateral force. All of the tire models estimating lateral force
depend on the slip angle α, which is defined as the angle between the lateral component
and longitudinal component of the velocity vector of the tire, as illustrated in Figure 2.3.
The axes et1, e

t
2 indicate the velocity components under consideration are in the tire frame,

with magnitudes vtx and vty. In physical terms, this captures the angle between the wheel’s
rolling direction and the actual direction of movement. This is analogous to the vehicle slip
angle β, which captures the difference between the vehicle’s direction of motion and the
direction it is facing. Any non-zero slip angle α will generate a lateral force at the tire that
is perpendicular to the direction of travel. All of the tire models discussed in this section
depend the magnitude of the slip angle.

For a four-wheel vehicle with front steering angle δ, we can define the tire slip angle of
each wheel by considering the kinematic relation between the linear velocity and angular
velocity at the center of mass, and the velocity components at each of the tires. From Figure
2.4, vx, vy indicate the velocity at the center of mass with angular velocity ω, v∆,∗

x′
, v∗,∆
y′

, with

CHAPTER 2. VEHICLE MODELS 11

E1

E2

e
t
2

v
t
y

v
t
x

α
v
t

e
t
1

Figure 2.3: The tire side slip measures the angle between the lateral and longitudinal com-
ponent of the tire velocity vector.

∗ = {1 = front, 2 = rear}, ∆ = {r = right, l = left} indicate the velocity components of each
tire in the tire frame, and v∆,∗

x , v∗,∆y indicate the velocity components of the tire projected
onto the vehicle frame.

E1

E2 vx

e
v
2

E3

v
rr
y
0

v
rr
x
0

v
rl
x
0

v
rl
y
0

e
v
1

vy
v
fr

x
0

v
fl

x
0v

fl

y
0

v
fr

y
0

v
fr
x

v
fr
y

v
fl
y

v
fl
x

δ

δ

!

2c

Lr

Lf

Figure 2.4: Longitudinal and lateral components of tire velocity in a four-wheel vehicle
model.

CHAPTER 2. VEHICLE MODELS 12

The velocity of each tire in each frame is computed based on the kinematic relation:

vt = vv + ω × rv→t (2.4)

where vv is the velocity vector at the center of mass in the vehicle frame, vt is the velocity
vector of the tire in the vehicle frame, w is the angular velocity vector of the vehicle and rv→t
is the displacement vector from the center of mass to the center of the tire contact patch.
Since we focus on planar motion, the angular velocity vector only has one component in the
z-direction of value ωz. Later in this section, by convention, we will refer to the yaw rate
with the symbol r = ωz. The longitudinal and lateral components of the velocity at each of
the tires are given in the following set of equations:

vfrx = vx + ωzc (2.5a)

vflx = vx − ωzc (2.5b)

vrrx = vx + ωzc (2.5c)

vrlx = vx − ωzc (2.5d)

vfry = vy + ωzLf (2.5e)

vfly = vy + ωzLf (2.5f)

vrry = vy − ωzLr (2.5g)

vrly = vy − ωzLr (2.5h)

The tire models for lateral force depend on velocity at each tire in the tire frame, so the
velocities are projected into the tire frame from the velocity frame through a rotation of δ
(i.e. the front steering angle) about the ev3 axis:

vf∗x′ = vf∗x cos δ + vf∗y sin δ (2.6a)

vf∗y′ = −vf∗x sin δ + vf∗y cos δ (2.6b)

vr∗x′ = vr∗x (2.6c)

vr∗y′ = vr∗y (2.6d)

For each tire, the side slip angle is the angle between the lateral and longitudinal velocity
components in the tire frame, as defined by the following equations:

CHAPTER 2. VEHICLE MODELS 13

αfl = tan−1
vfly′

vflx′
≈
vfly′

vflx′
(2.7a)

αfr = tan−1
vfry′

vfrx′
≈
vfry′

vfrx′
(2.7b)

αrl = tan−1
vrly′

vrlx′
≈
vrly′

vrlx′
(2.7c)

αrr = tan−1
vrry′

vrrx′
≈
vrry′

vrrx′
(2.7d)

Note that the side slip angle expression in equation (2.7) is often simplified to just the ratio
of the lateral to longitudinal velocity using the small angle approximation. For reference, we
also remark that the tire slip angles can be computed using the following set of equations,
where the expressions avoid the explicit rotation of the velocities into the tire frame:

αfl = tan−1

(
vfly

vflx

)
− δ (2.8a)

αfr = tan−1

(
vfry

vfrx

)
− δ (2.8b)

αrl = tan−1

(
vrly
vrlx

)
(2.8c)

αrr = tan−1

(
vrry
vrrx

)
(2.8d)

In additional to lateral deformation, the tire also deforms longitudinally, which propels
the vehicle forward. We quantify the longitudinal deformation using two related quantities,
the ‘theoretical’ slip ratio, σ, and the ‘practical’ slip ratio, κ. Both quantities provide a
measure of the slip (i.e. in contrast to pure rolling), but these quantities differ in terms
of the normalizing factor in the denominator. The theoretical slip ratio normalizes with
respect to the rolling speed of the tire, while the practical ratio normalizes with respect to
the longitudinal velocity at the center of the tire. The theoretical and practical slip ratios
are defined as follows [28]:

σ = −vx − ωR
ωR

=
k

1 + k
(2.9)

κ = −vx − ωR
vx

(2.10)

CHAPTER 2. VEHICLE MODELS 14

R

Re

!
∗;∆

F
∗;∆
x

v
∗;∆
x

Figure 2.5: The slip-ratio measures the amount of deformation along the rolling direction of
the tire.

Braking occurs when ω, κ > 0. The use case for each slip ratio definition varies. For
example, during hard braking, ωR ≈ 0 since the wheels lock, but vx > 0, so using the
definition of the theoretical slip ratio would yield numerical values that grow very large, thus
the practical slip ratio would provide a better measure of slip.

Figure 2.5 provides an illustration of the quantities involved in the calculation of the slip
ratio, where R denotes the radius of the tire and Re denotes the effective radius. As the
wheel rolls, it deforms in the vertical direction, so the effective radius Re of the rotational
motion of the wheel is smaller than the actual physical radius of the wheel R.

The slip ratio is important for estimating the longitudinal force generated from the tire.
The vehicle models used in the control design section of this thesis do not consider the effect
of the slip ratio on the vehicle dynamics, but we include it in this section for completeness.

Lastly, while both the tire side slip and slip ratio directly relate to magnitude of the lateral
and longitudinal force, the largest possible lateral and longitudinal forces are constrained by
the amount of friction available between the tire patch and the road surface. The resultant
force of each tire must be less than the total friction available, given below as:

F ∗,∆x + F ∗,∆y ≤ µF ∗,∆z (2.11)

where µ is the coefficient of friction and Fz is the normal force of the tire.
Friction heavily depends on the interaction between the road surface and tire. The

friction between a dry surface and rubber tires provides much more friction than between a
wet surface and rubber tires. We visualize the tire force constraint through a diagram called
the friction circle, in which the magnitude of the resultant force from the longitudinal and
lateral components of each tire are constrained to lie within the circle. The radius of the
circle is equal to the maximum force available from friction.

CHAPTER 2. VEHICLE MODELS 15

F
∗;∆
x

F
∗;∆
y

Rightward force

Leftward force

Braking

F
∗;∆

Acceleration

(a) During normal cornering, the vector sum of
longitudinal and lateral components of the tire
force lies within the limits of the friction circle.

F
∗;∆
x

Rightward force

Leftward force

Braking
F

∗;∆
y

F
∗;∆

Acceleration

(b) During tire saturation, the vector sum of lon-
gitudinal and lateral components of the tire force
reach the limits of the friction circle.

Figure 2.6: During typical cornering, the total tire force, F ∗,∆, uses only a portion of the
available friction from the friction circle, while during extreme maneuvers, like drifting, the
tire force uses all the available friction.

We show the friction circle for a tire in Figure 2.6. The x-axis corresponds to the lon-
gitudinal force and the y-axis corresponds to the lateral force. The direction of the lateral
force determines the rotational direction of the vehicle. If we consider the forces at the front
wheels, a positive lateral force corresponds to a left turn and a negative one corresponds to

CHAPTER 2. VEHICLE MODELS 16

a right turn. In Figure 2.6a, the resultant tire force lies within the friction force, whereas in
Figure 2.6a, the resultant force lies at the limits. Tires operating at the limits of the friction
circle are called saturated. We remark that tire saturation is important in drift dynamics,
which we will discuss in detail later.

In the following subsections, we discuss a few physics-based and empirical-based tire
models that estimate the lateral force. The models all consist of some functional form with
parameters that either correspond to physical parameters or a non-physical property of the
function curve. Longitudinal models often take a similar functional form, which the reader
can refer to [28] for more details, but we will primarily focus on lateral models, since the
lateral force, and in particular, the side slip angle β, play an important role in the dynamics
of drifting maneuvers.

Fiala Tire Model

We begin with a discussion of physics-based models, collectively called “brushed” tire models.
The most important element of this models are the “brushes” at the bottom of the tire that
come into contact with the road. The brushes act as springs as the tire deforms during
acceleration. The magnitude of the force along the et1 and et2 axis of the tires depends on
two factors: the amount of deformation and the maximum force available from friction.

The Fiala Tire Model describes analytically the relationship between the tire side slip
angles and the lateral force, based on the following physical parameters:

α = Slip angle

Cα = Tire cornering stiffness

µs = Sliding friction coefficient

µp = Peak friction coefficient

Fz = Normal load applied to the tire

The tire model takes in the tire slip angle α as input; all other terms are fixed parameters.
The Fiala model is given by the following non-linear piecewise function:

Fy(α) =

{
−Cα tanα−

C3
α(1− 2µs

3µp
)

9µ2
pF

2
z

tan3 α +
C2
α(2− µs

µp
)

3µpFz
| tanα| tanα : |α| < αs1

−µsFz sgn α : |α| ≥ αs1
(2.12)

The Fiala model strives for accuracy and physical intuition in describing tire forces. All
the parameters in the model correspond to physical properties of the tire or the surface,
which helps build intuition of how changing the tire or the road surface would affect the
forces generated. The model, however, is not smooth due to the piece-wise construction of
the model, which complicates its use in optimization solvers.

CHAPTER 2. VEHICLE MODELS 17

Pacejka Tire Model

The Pacejka model, as referred to as the ‘magic tire model’, is categorized as a semi-empirical
model, because the parameters within the model are estimated from data and do not corre-
spond to any physical terms, like the parameters in the Fiala tire model. The mathematical
structure of the Pacejka model, however, has similarities to the physical based models like
the Fiala and Duff’s model. The analytical expression for the Pacejka model is given as:

Fy(α) = D sin(C tan−1(B(1− E)α + E tan−1(Bα))) (2.13)

where B is the stiffness factor, C is the shape factor, D is the peak value, and E is the
curvature value. The stiffness factor, B, directly affects the slope of the model at small slip
angles. The plots in Figure 2.7 illustrate the way the curve changes as these factors vary.
All factors have a nominal value of 1.

From Figure 2.7a, the stiffness factor, B, affects the slope of the curve at small slip angles,
such that a large coefficient makes the slope steep and a small one makes the slope more
flat. From Figure 2.7b, the shape factor, C, similarly affects the slope of the curve, but
also affects the amplitude of the curve at small slip angles. From Figure 2.7c, the curvature
factor, E, affects the tail-end behavior of the curve. For high values of E, the curve takes
on more of an ‘S’ shape.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Slip angle α

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ir
e
fo
rc
e
F

Pajecka Model : stiffness factor

B=0.5
B=1
B=2

(a) Stiffness factor

-5 -4 -3 -2 -1 0 1 2 3 4 5
Slip angle α

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ir
e
fo
rc
e
F

Pajecka Model : shape factor

C=0.5
C=1
C=2

(b) Shape Factor

-5 -4 -3 -2 -1 0 1 2 3 4 5
Slip angle α

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ir
e
fo
rc
e
F

Pajecka Model : curvature factor

E=0.5
E=1
E=2

(c) Curvature Factor

Figure 2.7: The Pacejka tire model is characterized by coefficients that manipulate different
properties of the force curve, such as amplitude, curvature, and tail behavior.

In many applications, the Pacejka model is simplified by removing the curvature factor,
giving the following simplified model:

Fy(α) = D sin(C tan−1(Bα)) (2.14)

The Pacejka model remains one of the most popular models in the vehicle dynamics
community for its ability to describe a wide spectrum of tires. Since the model factors are
determined from experimental data, the Pacejka model yields accurate predictions for tire

CHAPTER 2. VEHICLE MODELS 18

force. Through out this work, the Pacejka model is used to describe the tire forces because
the model parameters can be optimized to fit experimental data well, and because the model
is smooth and continuous, unlike the Fiala tire model. Smooth models are also easier to use
with non-linear solvers for the equilibrium analysis discussed later.

Combined Slip Models

Combined side slip models take both the slip angle and the slip ratio into account when
computing the lateral and longitudinal forces emerging from the tire. The main difference is
that the lateral force and longitudinal force are coupled and are constrained by the limits of
the friction circle. The tire slip quantities are computed according to the definitions given
earlier, except:

sx′ =

κ = ωR−vx

vx
vx′ ≥ ωR

σ = ωR−vx
ωR

vx′ < ωR
(2.15a)

sy′ =
vy′

wR
(2.15b)

s =
√
s2
x′ + s2

y′ (2.15c)

where sx′ represents the tire slip ratio and sy′ represents the tire side slip angle, with the
tick superscript indicating that the quantities are with respect to the tire frame. By using
the small angle approximation, note that β = tan−1 vy′

vx′
≈ vy′

vx′
≈ vy′

ωR
= sy′ .

The longitudinal and lateral force in the tire frame at each tire are then computed using
the following expression:

Fx′ = −µFz
sx′

s
D sin

(
C tan−1(Bs)

)
(2.16a)

Fy′ = −µFz
sy′

s
D sin

(
C tan−1(Bs)

)
(2.16b)

where µ is the sliding friction coefficient, Fz is the normal force of the tire, and B, C,
D are Pacejka model parameters. The combined slip quantity, s, comes into play in the
calculation of the friction forces. It enters inside the fractional term,

si′
s

, which divides the
total amount of friction available for between the longitudinal and lateral directions.

Dynamic Vehicle Models

Planar Two-Wheel Model

We now discuss dynamic vehicle models and start with the most basic dynamic model, the
planar dynamic bicycle model. This model only considers translation in the x and y direction

CHAPTER 2. VEHICLE MODELS 19

and rotation about the E3 axis. As in the previous section, the vehicle model lumps the
front and rear tires to simplify the model by reducing the number of forces acting on the
rigid body. For the equation of motion, we assume the vehicle is rear-wheel drive only,
meaning the input force from the engine appears only through the term F r

x , so the front tire
longitudinal force is zero (i.e. F f

x = 0).

The state vector is z =
[
vx vy r

]>
, where vx and vy are the longitudinal and lateral

velocity of the vehicle in the vehicle body-fixed frame, and r = ψ̇ is the angular velocity

along the ev3 axis. The input vector is u =
[
δ Fxr

]>
. The equation of motion in state space

form are given below:

v̇x = vyr +
1

m
(F r

x − F r
y sin δ) (2.17a)

v̇y = −vxr +
1

m
(F r

y + F f
y cos δ) (2.17b)

ṙ =
1

Iz
(LfF

f
y cos δ − LrF r

y) (2.17c)

where F f
y and F r

y and the lateral components of the tire force in the front and rear wheel,
respectively. The terms sin δ and cos δ come from projecting the forces in the tire frame into
the vehicle frame.

Even with a lumped tire model assumption and neglect of other external forces, the
dynamic bicycle model serves as an appropriate model for steering control [9] and lateral
control, [29], among many other applications.

Two-Wheel Model Load Transfer

For extreme maneuvers like drift that excite roll and pitch dynamics, it is important to
account for the effects of load transfer. Load transfer refers to the change in distribution of
normal forces among the wheels during acceleration. Load transfer is a physical phenomenon
that occurs in any vehicle just by the principles of Newtonian mechanics. Aside from the
rotational dynamics on the vehicle, load transfer impacts how fast a vehicle can accelerate.
For example, when the vehicle moves forward and accelerates, more of the normal force is
distributed to the rear wheels, meaning the friction circle on the rear wheels gets larger so
the vehicle can utilize more of that force to accelerate forward. At the same time, the normal
on the front wheels decrease, so they do not have as much capability to propel the vehicle
forward as the rear.

For planar models, we can capture the dynamics of load transfer by writing out the
equations for the balance of linear and angular momentum. We write the balance of forces
in the e3 direction by equating the normal forces from the tires with the weight of the vehicle

mg = F f
z + F r

z (2.18)

CHAPTER 2. VEHICLE MODELS 20

e
v
1

e
v
3

Lr Lf

F
r
z

F
r
x F

f
x

F
f
z

h

Figure 2.8: The longitudinal and vertical components of the tire forces acting within the
ev1-ev3 plane generate a moment about the ev2 axis. The positive ev2 axis points into the page.

We also write the balance of angular momentum equation about the e2 axis:

Lf (F
f
z) + h(F f

x + F r
x) = Lr(F

r
z) (2.19)

From the balance equations in (2.18) and (2.19), and the combined slip tire model in
(2.15) and (2.16), we can solve for an analytical expression for the normal force on each tire
as:

F f
z =

gm (Lr − hµµrx′)

Lf + Lr − hµµrx′ + hµ
(
µfx′ cos (δ)− µfy′ sin (δ)

) (2.20)

F r
z =

gm
(
Lf + hµ

(
µfx′ cos (δ)− µfy′ sin (δ)

))
Lf + Lr − hµµrx′ + hµ

(
µfx′ cos (δ)− µfy′ sin (δ)

) (2.21)

where the terms µfi′ , µ
r
i′ , i
′ ∈ {x′, y′} come from the combined slip tire model as follows:

µfi′ =
si′

s
Df sin

(
Cf tan−1(Bfs)

)
(2.22)

µri′ =
si′

s
Dr sin

(
Cr tan−1(Brs)

)
(2.23)

The terms B, C, D come from the Pacejka model and the superscripts indicate which
tire the parameter corresponds to, either front or rear.

Planar Four-Wheel Dynamic Model

The four-wheel vehicle model more accurately captures the dynamics since it accounts for
the forces generated at each of the wheels.

CHAPTER 2. VEHICLE MODELS 21

As with the previous subsection, the state vector is z =
[
vx vy r

]>
, but the input

vector is now u =
[
δ F rr

x F rl
x

]>
, where F rr

x and F rl
x are the magnitudes of the forces acting

on the back-right and back-left wheel, respectively:

v̇x = vyr +
1

m
(F fl

x + F fr
x + F rl

x + F rr
x) (2.24a)

v̇y = −vxr +
1

m
(F fl

y + F fr
y + F rl

y + F rr
y) (2.24b)

ṙ =
1

Iz
(Lf (F

fl
y + F fr

y)− Lr(F rl
y + F rr

y) + c(F rr
x − F rl

x)) (2.24c)

where we introduce the coordinate transformations from the tire frame, denoted by a tick
superscript (e.g. x′, y′), to the vehicle frame. Note that the rear wheels are not steered, so
only the forces from the front tires need to be projected into the vehicle frame:

F f∗
x = −F f∗

y′
sin δ (2.25a)

F f∗
y = F f∗

y′
cos δ (2.25b)

where ∗ = {r = right, l = left} and ∆ = {x, y}, and c is half the width of the vehicle.
Again, we assume rear wheel drive only, which means that longitudinal forces acting on

the front tire are all zero, i.e. F fl
x = F fr

x = 0. We also remark that in this formulation, we
assume the front wheels point in the same direction, and that the rear wheels also point in
the same direction.

By comparing the expression from the lumped tire approximation in the bicycle model,
we note that bicycle model assumes F f

∗ = F fr
∗ + F fl

∗ and F r
∗ = F rr

∗ + F rl
∗ , where ∗ = {x, y}.

In the four-wheel tire model, the forces generated at each tire patch are not assumed to
be equal. Furthermore, the rotational dynamics account for the moment generated by the
longitudinal tire force at the rear wheels, since the wheels are not acting on the ev1 axis, as
in bicycle model.

Planar Four-Wheel Model with Wheel Dynamics

The previous model serves well in many applications by accounting for the forces generated
at each of the tire patches. A more accurate model, however, accounts for the rotational
dynamics of each of the wheels. The wheels turn due to the torque generated by the engine.

The state vector is now z =
[
vx vy r ωfl ωfr ωrl ωrr

]>
, where ω{∗,∆} is the angular

velocity of each one of the four wheels, ∗ = {f = front, r = rear}, ∆ = {r = right, l = left}.
The input vector is u =

[
δ T rr F rl

]>
, where T rr is the torque acting on the back-right

wheel and T rl is the torque acting on the back-left wheel.
Note that each of the forces at the wheel patches F ∗,∆x and F ∗,∆y are no longer inputs

we directly control, but forces generated by deformation of the tires. There are various

CHAPTER 2. VEHICLE MODELS 22

functional forms of these forces, but we will defer that to a later section. Also note that
we now account for the longitudinal force generated along the front tires F fl

x and F fr
x , but

torque inputs do not directly act on those terms, so the magnitudes will be relatively small.
Again, we are assuming a rear-wheel drive vehicle:

v̇x = vyr +
1

m
(F fl

x + F fr
x + F rl

x + F rr
x) (2.26a)

v̇y = −vxr +
1

m
(F fl

y + F fr
y + F rl

y + F rr
y) (2.26b)

ṙ =
1

Iz
(Lf (F

fl
y + F fr

y)− Lr(F rl
y + F rr

y) + c(F fr
x + F rr

x − F fl
x − F rl

x)) (2.26c)

ω̇fl =
1

Iw
(−F fl

x′
R) (2.26d)

ω̇fr =
1

Iw
(−F fr

x
′ R) (2.26e)

ω̇rl =
1

Iw
(T rl − F rl

x′
R) (2.26f)

ω̇rr =
1

Iw
(T rr − F rr

x
′ R) (2.26g)

Again, since we now consider the longitudinal force at the front wheels, we introduce the
coordinate transformations:

F f∗
x = F f∗

x′
cos δ − F f∗

y′
sin δ (2.27a)

F f∗
y = F f∗

x′
sin δ + F f∗

y′
cos δ (2.27b)

F r∗
∆ = F r∗

∆′
(2.27c)

where Iw is the moment of inertia of the wheel and R is the radius of the wheel. More
details on the derivation of this system model are given in [31].

Four-Wheel Model Load Transfer

As with the two-wheel model, we can account for the effect of weight transfer by writing
out the balance equations for the linear and angular momentum, so that we capture how
the normal force is distributed among each of the four wheels. The physical effect of weight
transfer is visible to observers when a vehicle aggressively turns left around a corner, the
tires on the right side absorb some of the normal force from tires on the left wheels and the
vehicle roll angle tilts heavily to the right.

To compute the total normal force on each of the four wheels, F i,j
z , where i ∈ { f = front,

r = rear } and j ∈ { r = right, l = left }, we need four balance equations. The total weight
of the vehicle is equal to the sum of the normal forces produced by the tires:

CHAPTER 2. VEHICLE MODELS 23

e
v
1

e
v
3

Lr Lf

F rl
z ; F rr

z

F rl
x ; F rr

x F fl
x ; F fr

x

F fl
z ; F fr

z

h

Figure 2.9: The longitudinal and vertical components of the tire forces acting within the
ev1-ev3 plane generate a moment about the ev2 axis. The positive ev2 axis points into the page

e
v
3

e
v
2

c c

h

F fl
z ; F rl

z F fr
z ; F rr

z

F fr
y ; F rr

yF fl
y ; F rl

y

Figure 2.10: The lateral and vertical components of the tire forces acting within the ev2-ev3
plane generate a moment about the ev1 axis. The positive ev1 axis points into the page (i.e.,
we are facing the rear side of the vehicle).

mg = F fl
z + F fr

z + F rl
z + F rr

z (2.28)

For balance of angular momentum about the ey axis, using the diagram in Figure 2.9,
we have the following equation:

(F fl
z + F fr

z)Lf + (F fl
x + F fr

x + F rl
x + F rr

x)h = (F rl
z + F rr

z)Lr (2.29)

For balance of angular momentum about the ex axis, using the diagram in Figure 2.10,
we have the following equation:

(F fl
z + F rl

z)c+ (F fl
y + F fr

y + F rl
y + F rr

y)h = (F fr
z + F rr

z)c (2.30)

CHAPTER 2. VEHICLE MODELS 24

CoG e
v
1

e
v
2

e
v
3

z
fr

z
fl

z
rr

z
rl

Figure 2.11: The vertical deformation of the tires are balanced in the diagonal direction.

Lastly, since we consider only planar motion, we constrain the vehicle wheels that are
diagonal from each other to deform vertically in equal, but opposite, magnitude. This
deformation constraint is illustrated in Figure 2.11. We write the constraint as follows:

zfl + zrr = zfr + zrl (2.31)

F fl
z + F rr

z = F fr
z + F rl

z (2.32)

The equations for balance of linear and angular momentum, as well as the vertical defor-
mation constraint, constitute a system of linear equations with which we can solve for the
normal force on each of the tires. After solving, we have the following set of equations:

F fl
z =

1

4c (Lf + Lr)
(2Lrcgm− 2chFX − h (Lf + Lr)FY) (2.33a)

F fr
z =

1

4c (Lf + Lr)
(2Lrcgm− 2chFX + h (Lf + Lr)FY) (2.33b)

F rl
z =

1

4c (Lf + Lr)
(2Lfcgm+ 2chFX − h (Lf + Lr)FY) (2.33c)

F rr
z =

1

4c (Lf + Lr)
(2Lfcgm+ 2chFX + h (Lf + Lr)FY) (2.33d)

FX = F fl
x + F fr

x + F rl
x + F rr

x (2.33e)

FY = F fl
y + F fr

y + F rl
y + F rr

y (2.33f)

The normal forces F ij
z come into play when calculating the longitudinal F ij

x′ and lateral
forces F ij

y′ in the tire frame from the combined slip model in (2.15) and (2.16). The set of

equations in (2.33) are not in closed form, since F ij
x and F ij

y depend on F ij
z from equations

(2.15) and (2.16), but F ij
z depends on F ij

x and F ij
y from the set of equations in (2.33). This

CHAPTER 2. VEHICLE MODELS 25

issue can be resolved either by using an algebraic engine to solve for a closed-form solution
for each tire force F ij

z , or treating all the force variables as dynamic terms, by setting them
with initial conditions and then updating their values in simulation at each iteration using
the equations in (2.15), (2.16), and (2.33).

2.5 Model Fidelity

The previous sections focused on tire models and planar vehicle models to capture the motion
of the vehicle. Model selection directly impacts the performance of model-based control and
state estimation. For example, using a kinematic model for a cornering maneuver will yield
predictions that diverge significantly from the true path. Even with dynamic models, if
the tire model is inaccurate, then the entire system model is compromised, and will not
accurately predict the motion of the vehicle. In this section, we briefly discuss the accuracy
of two of the dynamic models to model a high slip maneuver.

To assess the accuracy of the system model, we simulate a high cornering maneuver using
a two-wheel and four wheel bicycle model with a combined slip tire model, and benchmark
the results against the results from CarSim, a high fidelity, commercial vehicle dynamics sim-
ulator. CarSim sets the standard for high-fidelity simulated dynamics and has a significant
user-base in both the academic and automotive communities.1. CarSim does not provide
the analytical models used for simulation, but the vehicle state includes hundreds of terms,
since subsystems like suspension, power steering, and engine dynamics are all modeled.

We configure CarSim to use the parameters in the table below. The two-wheel and
four-wheel models are given the same system parameters and initial state as CarSim.

Table 2.1: CarSim parameters

Parameter Value
m [kg] 1270

Iz [kg · m2] 1535
Lf [m] 1.015
Lr [m] 1.895

The tire model parameters from CarSim are used in the combined slip models for the
two-wheel and four-wheel vehicle models. The two-wheel and four-wheel models include
wheel dynamics and are simulated forward using Euler discretization with a time step of
∆t = 10 ms, over a horizon of T = 6 s. We remark that in CarSim, the user can specify
steering commands and torque commands to all four wheels. As such, the steering angle of
the rear two wheels are set to zero, and the input torques to the front two wheels are set to

1For an overview of automotive companies that use CarSim, visit:
https://www.carsim.com/company/customers/index.php

https://www.carsim.com/company/customers/index.php

CHAPTER 2. VEHICLE MODELS 26

zero. We feed the same open-loop sequence of torque and steering commands to CarSim for
the four-wheel model and the two-wheel model.

Figure 2.12: All system models initially drive straight and then turn to the left and apply a
torque command to the motor.

Figure 2.12 shows the form of the input command we feed into each system model. The
inputs are fed into each system over the simulation period, and then the position outputs
from each model are recorded.

CHAPTER 2. VEHICLE MODELS 27

Figure 2.13: The trajectories from the two-wheel (blue) and four-wheel (green) models both
diverge from the trajectory of the CarSim model (red) as the vehicle enters into the drift
maneuver.

Figure 2.13 illustrates the trajectories using each of the system models in the global
frame. The blue and green trajectories represent the position output coming from the two-
wheel and four-wheel models, respectively. The red trajectory comes from CarSim and sets
the benchmark for comparison. We see that the trajectory of the two-wheel model deviates
significantly from the CarSim one, with a difference in final position of over 10 meters. The
four-wheel model initial predicts the motion much better, but still diverges midway through
the turn, resulting in a terminal position that is several meters off from CarSim.

Figure 2.14 shows the the longitudinal velocity, lateral velocity, and yaw rate over time.
The bold curve represents CarSim, the thinner solid curve represents the four-wheel model
and the dash thin curve represents the two-wheel model. These curves more clearly illustrate
that the yaw rate and lateral velocity, in particular, diverge from the CarSim benchmark as
soon as the turning maneuver starts.

From the figures above, both the two-wheel and four-wheel models output the same

CHAPTER 2. VEHICLE MODELS 28

Figure 2.14: The longitudinal velocity (blue), lateral velocity (red), and yaw rate (black)
begin to diverge significantly from the CarSim benchmark values as the vehicle initiates the
turning maneuver at t = 5 s.

vehicle position as CarSim for the straight portion of the trajectory, but then diverge when
the vehicle starts cornering. Even with a four-wheel model with a combined slip model
and identical parameters to CarSim, the simulated results diverge. The divergence stems
primarily from tire model mismatch. While the Pacejka model estimates the forces well
at low slip angles, the model loses accuracy at high slip angles when the tire forces are at
or near saturation. CarSim uses a more complex tire model that accounts for many more
coupled effects between the lateral and longitudinal forces, which become significant at high
slip angles. These models include dozens of equations to compute each force component, as
in [28].

One of the contributions of this thesis is showing that over a short time duration in
an unchanging environment (e.g. race track), systems that operate in open loop behave
deterministically, with small variance, yielding very predictable system responses, even when
the dynamics are complex and difficult to model. For example, even though the two-wheel
and four-wheel models do not accurately predict the position of the vehicle during the high-
steer turn, if we perform the maneuver again, from approximately the same initial position
and velocity, the resulting trajectory would be nearly the same. This effect makes intuitive
sense for many physical systems. If the system evolves again from the same initial state using
the same control input over a short time scale, then we would expect the resulting trajectory
to be similar to the original one (red path). We demonstrate this later in the dissertation
through a mixed open-loop, closed-loop strategy for drift parking and drift cornering.

CHAPTER 2. VEHICLE MODELS 29

2.6 Model Identification

In order to apply model-based control techniques, the vehicle and tire model parameters must
first be identified for a specific vehicle. In this dissertation, experiments are only conducted
on a 1/10-scale remote control (RC) vehicle called BARC, and are explained more in the
next chapter.

Mass and Moment of Inertia

For the BARC platform, we measure the mass, m, directly using a digital hanging luggage
scale from Etekcity. We estimate the moment of inertia, Iz, by suspending the vehicle using
two wires and rotating it, then measuring the frequency of oscillation and then using that
information to infer the moment of inertia.

From [21], we have the dynamics of a bifiliar pendulum given as follows:

θ̈ +

(
KD

I
θ̇|θ|+ C

I
θ

)
+
mgD2

4hI

sin θ

1− 0.5(D
h

)2(1− cos θ)
= 0 (2.34)

where θ is the angular displacement, h is the vertical displacement from the ceiling, D is
the distance between the two wires at the suspension point on the ceiling, g is acceleration
due to gravity, and KD and C are empirically determined aerodynamic and viscous damping
parameters, respectively. This equation can be simplified into a linear form by neglecting
the damping terms and using a small angle approximation to yield the following:

θ̈ +
mgD2

4hI
θ = 0 (2.35)

We can solve for the moment of inertia by substituting a solution form θ = A sin(ωnt),
where A is a constant and ωn is the frequency of oscillation. After substituting, we have the
following:

I =
mgD2

4hω2
n

(2.36)

Equation (2.36) gives a way to estimate inertia through the bifilar pendulum experiment by
only measuring the length of suspension wires and timing the period of oscillation.

Tire Model Parameters

The Pacejka and Fiala tire models discussed previously both have sets of parameters that
need to be identified in order to estimate the lateral forces. In order to obtain them, we first
estimate the lateral forces using a dynamic bicycle model. We consider only the lateral and

CHAPTER 2. VEHICLE MODELS 30

rotational dynamics of the vehicle:

v̇y = −vxr +
1

m
(F r

y + F f
y cos δ)

ṙ =
1

Iz
(LfF

f
y cos δ − LrF r

y)

From those dynamic equations, we can solve for the lateral force for both the front and
rear wheels, giving the following expressions:

F f
y =

Iz ṙ + Lrm(v̇y + rvx)

(Lf + Lr) cos (δ)
(2.38a)

F r
y =

1

Lf + Lr
(−Iz ṙ + Lfm (v̇y + rvx)) (2.38b)

During an experiment, we can measure all the quantities on the right hand side of the
equation (2.38) using sensor measurements (e.g. encoders, inertial measurement unit (IMU),
camera and GPS). Assuming the IMU is mounted near the center of gravity, we remark that
the terms ax = v̇x − rvy and ay = v̇y + rvx come directly from IMU linear acceleration
measurements, as shown in the following kinematic equations:

v = vxe
v
1 + vye

v
1 (2.39a)

a = v̇ (2.39b)

= v̇xe
v
1 + vxė

v
1 + v̇ye

v
1 + vyė

v
2 (2.39c)

= (v̇x − θ̇vy)ev1 + (v̇y + θ̇vx)e
v
2 (2.39d)

a = axe
v
1 + aye

v
2 (2.39e)

where v and a are the velocity and acceleration vectors, respectively, in the vehicle body
frame. Note that for the yaw rate, we define r = θ̇.

From the equations above, we can estimate the lateral forces at each time step and then
solve an optimization program to fit a tire model to the data. We solve for the front tire
model with the following optimization program:

min
Bf ,Cf ,Df

T∑
k=0

‖F f
y [k]− Fmdl[k]‖2 (2.40a)

s.t ∀k ∈ {0, 1, ...T}

αf [k] = tan−1

(
β[k] +

r[k]Lf
vx[k]

)
− δ[k] (2.40b)

Fmdl[k] = Df sin(Cf tan−1(Bfαf [k])) (2.40c)

CHAPTER 2. VEHICLE MODELS 31

and similarly, for the rear wheel, using the following optimization program:

min
Br,Cr,Dr

T∑
k=0

‖F r
y [k]− Fmdl[k]‖2 (2.41a)

s.t ∀k ∈ {0, 1, ...T}

αr[k] = tan−1

(
β[k]− r[k]Lr

vx[k]

)
(2.41b)

Fmdl[k] = Dr sin(Cr tan−1(Brαr[k])) (2.41c)

where Bi, Ci, and Di are the parameters we want to identify and αi[k] is the slip angle
at time step k. Both programs fit the model to the data by minimizing the sum of residuals
of the lateral force over the entire experiment. The constraints reflect the definition of the
slip angle for the front and rear tires, as well as define the functional form of the tire model,
in this case, the Pacejka tire model.

2.7 Equilibrium Analysis

In this section, we characterize drift by conducting an analysis of the system during steady
state drift. This analysis helps build intuition of what is meant by drift in terms of state and
input values. Works from [15] and [7] also conduct this analysis as the basis for designing
our control policies.

Drift is an advanced driving maneuver that is characterized by rear tire saturation, high
side slip angle, and counter-steering. Intentional drifting is beyond the skill set of the average
driver, but it is common maneuver in sporting events, like rally racing. From the perspective
of an observer, high side-slip corresponds to ‘sideways’ (i.e. lateral) motion of the vehicle,
counter-steering means that the direction of rotation is opposite that of the steering angle,
and tire saturation, as discussed earlier, means the tires cannot generate any more force
from the friction available. During a turning maneuver with tire saturation, the tires often
produce smoke at the tire contact patches and emit an audible high pitch sound.

We now study the dynamics of drift at steady state. Recall that for any system ż =
f(z, u), with z as the state vector and u as the input vector, the equilibrium of the system
occur at values zeq and ueq, such that

f(zeq, ueq) = 0 (2.42)

The equilibria state zeq and input ueq set all of the system derivatives to zero. The steady
state definition in (2.42) does not mean that our system state is zero, but that the state and
input do not change (i.e. the slip angle, velocity and yaw rate may be non-zero, but they
do not change over time). The problem statement is to find values of zeq and ueq such that
equation 2.42 holds true.

CHAPTER 2. VEHICLE MODELS 32

In the following subsections, we consider two models, the two-state dynamic bicycle model
and the three-state dynamic bicycle model. Each model provides some insight into how the
state variables interact during drifting conditions.

Two state equilibrium analysis

Recall the dynamic equations for a bicycle model:

v̇x = vyr +
1

m
(F r

x − F f
y sin δ)

v̇y = −vxr +
1

m
(F r

y + F f
y cos δ)

ṙ =
1

Iz
(LfF

f
y cos δ − LrF r

y)

Note that the system dynamics reduce from a set of differential equations to a system of
n nonlinear equations with n unknowns, where n is the order of the state.

As we study the dynamics of drift, we remark that steady state implies a continuous

drift with an unchanging state z =
[
vx vy r

]>
. For our system, to simplify the analysis,

we assume a constant longitudinal velocity, vx. We treat vx as a parameter, reducing the

system state to z =
[
vy r

]>
. Assuming vy ≈ βvx, for constant longitudinal velocity, we

transform the lateral dynamics to side slip dynamics, since drift is characterized by the side
slip angle, which encodes information about both the lateral and longitudinal velocity. From
the dynamics equations above, we solve the following reduced set of equations:

0 = −req +
1

mvx
(F f,eq

y cos δeq + F r,eq
y) (2.43a)

0 =
1

Iz
(LfF

f,eq
y cos δ − LrF r,eq

y) (2.43b)

where we treat the longitudinal velocity vx as a fixed parameter. From equation (2.43),
we have two equations but three unknowns, the steering angle, δ, the slip angle, β, and the
yaw rate, r. We have an underdetermined system of equations since we have more unknown
variables than equations. We resolve this by gridding the value of the steering angle along
a range of values, and then iteratively fixing the value of steering angle, then solving the
system of equations. In the end, we find equilibrium values βeq, req for each equilibrium
steering angle δeq. We can also compute the equilibrium lateral forces F f,eq

y and F r,eq
y since

CHAPTER 2. VEHICLE MODELS 33

they are functions of the equilibrium states and inputs.

-20 -15 -10 -5 0 5 10 15 20

Steering angle δeq [deg]

-80

-60

-40

-20

0

20

40

60

80

S
id
e
sl
ip

an
gl
e
β
e
q
[d
eg
]

Side slip angle βeq [deg]

Cornering
-F r

y saturation

+F r
y saturation

Figure 2.15: The side slip angle β does not grow beyond a couple of degrees under normal
cornering conditions (black circled curve). Under rear tire saturation (blue and red curves),
the slip angles grow to large values.

CHAPTER 2. VEHICLE MODELS 34

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

-150

-100

-50

0

50

100

150

Y
aw

ra
te

r
e
q
[d
eg
/s
]

Yaw rate req [deg/s]

Cornering
-F r

y saturation

+F r
y saturation

Figure 2.16: The yaw rate r scales linearly with the magnitude of the steering angle under
typical cornering conditions (black circled curve). Under rear tire saturation (blue and red
curves), the yaw rate maintains a large value.

CHAPTER 2. VEHICLE MODELS 35

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

F
ro
n
t
L
at
er
al

F
or
ce

F
f
,e
q

y
[N

]

Front Lateral Force F f,eq
y [N]

Cornering
-F r

y saturation

+F r
y saturation

Figure 2.17: The front lateral force F f,eq
y scales linearly with the magnitude of the steering

angle under typical cornering conditions (black circled curve). Under drift conditions (blue
and red curves), the rear lateral force is saturated and the front lateral force maintains a
large value.

CHAPTER 2. VEHICLE MODELS 36

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

R
ea
r
L
at
er
al

F
or
ce

F
r,
e
q

y
[N

]

Rear Lateral Force F r,eq
y [N]

Cornering
-F r

y saturation

+F r
y saturation

Figure 2.18: The rear lateral force F r,eq
y scales linearly with the magnitude of the steering

angle under typical cornering conditions (black circled curve). Under drift conditions (blue
and red curves), the rear lateral force is saturated.

CHAPTER 2. VEHICLE MODELS 37

We grid the input δ, and repeatedly solve equation (2.43) for the equilibrium states
under three conditions. In the first condition, we set the rear lateral force to equal the value
predicted by the Pacejka model, so that F r

y = Dr sin(Cr tan−1(Brαr)). In the second and
third condition, we set the rear lateral force to the maximum value given by the friction
circle (i.e. F r

y = ±Dr) to enforce tire saturation in either the clockwise or counter-clockwise
direction. We use parameter values from the BARC platform to conduct the equilibrium
analysis, given in the table below:

Table 2.2: RC-car parameters

Parameter Value
m [kg] 1.98

Iz [kg · m2] 0.24
Lf [m] 0.125
Lr [m] 0.125
Bf , Br 7.4
Cf , Cr 1.2
Df , Dr -2.27

The front and rear wheels have identical tires and approximately the same estimated
values for Pacejka model coefficients. We then use the MATLAB nonlinear solver vpasolve
to obtain a numerical solution.

After solving (2.43) for the equilibrium states and input, we obtain the plots shown in
Figures 2.16 through 2.17 . These plots show equilibrium with three sets of markers for
each of the three conditions mentioned above that reflect normal cornering and drift (clock
wise, and counter-clockwise). The black open circles represent normal cornering conditions,
and those with the red pluses and blue triangles represent drifting. The distinguishing
characteristic between the two regions is the lateral force. For drifting to occur, the rear tire
lateral force must be at or near saturation, which coincides with high slip angle and yaw rate
values.

From Figure 2.16, we observe that the slip angle β does not grow beyond a few degrees
in the case of typical cornering, when the rear tire lateral force operates in the linear region.
When the rear lateral force is set to lie at the limit of the friction circle, the slip angles are
large for all values of steering. We observe typical counter steering behavior when examining
the slip angle and yaw rate plots from Figure 2.15 and Figure 2.16, respectively. Under drift
conditions, the sign of the yaw rate is opposite to the sign of the steering angle and slip
angle, meaning that while the rotation of the vehicle body in the inertia frame rotates in
one direction, the angle of the steering wheels point in the opposite direction. We remark
that with the two-state model we assume the rear tires are saturated entirely in the lateral
direction, which is not accurate, but still gives insight for how a more complex model would
behave. The equation for the yaw dynamics shows that the magnitude of the front lateral

CHAPTER 2. VEHICLE MODELS 38

force F f
y must nearly balance that which is coming from the rear lateral force in order to

achieve a steady state condition

LfF
f,eq
y cos δ = LrF

r,eq
y

which is reflected in the curves in Figures 2.17 and 2.18, and the plots look nearly identical.
This result also indicates that rear tire saturation leads, particularly in the lateral direction,
to front tire saturation to balance the yaw dynamics at steady state. All forces induced on
the front tires will arise in the lateral direction since we are assuming a rear-wheel drive
vehicle.

Phase portrait analysis

Phase portrait analysis also gives insight into the behavior of the system around equilib-
ria. These plots illustrate the evolution of an autonomous (fixed input) two-state system
starting from several initial conditions. For nonlinear systems, the resulting curves may ei-
ther converge to stable equilibrium, diverge from an unstable equilibrium, get pulled into a
limit cycle, or exhibit chaotic behavior. In general, analytical forms for the curves in phase
portraits are solved by dividing the differential equations, isolating state variables terms on
either side of the equality, and then integrating. This technique is known as separation of
variables (Fourier method):

ṙ

β̇
=
−r + (1/mvx)(F

f
y cos δ + F r

y)

1/Iz(LfF
f
y cos δ − LrF r

y)
(2.44)

It is nontrivial, however, to separate the terms, so we instead construct the phase portrait
by gridding the state space, and then feeding those points and the initial conditions into the
two-state system equation in (2.43), with fixed input, and then use an ordinary differential
equation solver to propagate the dynamics forward. Figure 2.19 illustrates the resulting
back curves from evolving the system at each grid point. The blue arrows are direction
fields that are computed by evaluating the system gradient at each gridded point. Figure
2.19 shows three system equilibria, one stable and two unstable ones, denoted by a crossed,
red diamond and an open, red circle, respectively. The direction fields all indicate that the
system naturally evolve to the stable state at (β = β = −0.0025, r = −1.6927).

The two unstable equilibria differ in terms of motion. The equilibrium point at (β =
0.3558, r = −1.9130) indicates that the vehicle rotates in the direction of the turn, while the
equilibrium point at (β = −1.3454, r = 1.9130) indicates counter-steer with very large lateral
movement. The opposite signs of the yaw rate r and the steering angle δ indicate counter-
steering, and the large slip angle β indicates large lateral motion, or ‘sideways’ motion. Both
points exhibit tire saturation, but the unstable equilibrium at (β = −1.3454, r = 1.9130)
represents the desired drift behavior because of the large side slip angle and counter-steering.

The classification of equilibria as stable or unstable is further verified by linearizing the
system at each equilibrium point ∇zf(z, u) and computing the eigenvalues. Since we are

CHAPTER 2. VEHICLE MODELS 39

considering a continuous system, eigenvalues that are in the negative left half plane have
stable poles and thus represent locally stable equilibrium point, or nodes. Conversely, if at
least one eigenvalue is in the positive right half plane, then the equilibrium point is unstable.
We verify the locally stable properties of the equilibrium point at (β = 0.04, r = −1.77) by
computing the eigenvalues as shown below:

A1 = ∇zf(z =
[
0.04 −1.77

]>
, u = −0.35) ≈

[
−2.9264 −0.9997
0.0031 −0.3772

]
(2.45a)

λ1 = eig(A1) ≈ {−2.92,−0.37} (2.45b)

The same computation for the other two equilibria show that they are unstable due to a
positive eigenvalue.

CHAPTER 2. VEHICLE MODELS 40

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
β [rad]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

r
[r
ad

/s
]

Phase portrait with v
eq

x
= 1.20 [m/s] and δeq = -20.00 [deg]

Figure 2.19: The phase portrait illustrates three equilibria associated with the vehicle run-
ning at vx = 1.20 [m/s] and δeq = -20.00 [deg]. The small, open, red circles at the top and
bottom of the plot indicate unstable drift equilibrium, and the diamond-shaped red marker
around at around (β = 0.04,r = −1.77) indicates a stable equilibrium, or normal cornering
condition. The black lines and blue arrows indicate fields or how the system starting at any
state within the space shown would evolve. As expected, all systems would move toward the
stable equilibrium state.

Figure 2.20 illustrates a phase portrait for the case when the steering is positive, δ = +20.
The new phase portrait similarly shows two unstable nodes and one stable node, but with
the stable equilibrium point shifted to (β = 0.00,r = 1.69).

CHAPTER 2. VEHICLE MODELS 41

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
β [rad]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

r
[r
ad

/s
]

Phase portrait with v
eq

x
= 1.20 [m/s] and δeq = 20.00 [deg]

Figure 2.20: The phase portrait illustrates three equilibria associated with the vehicle run-
ning at vx = 1.20 [m/s] and δeq = +20.00 [deg]. The small, open, red circles at the top and
bottom of the plot indicate unstable drift equilibrium, and the diamond shaped red marker
around at around (β = 0.00,r = 1.69) indicates a stable equilibrium, or normal cornering
condition. The black lines and blue arrows indicate fields or how the system starting at any
state within the space shown would evolve. As expected, the system moves toward the stable
equilibrium state.

Three-state equilibria analysis

The previous section provide insight into the two states of focus during drift dynamics,
slip angle β and yaw rate r. This section discusses equilibrium analysis with a three-state,
lumped-tire vehicle model, which now accounts for longitudinal dynamics. We have the state

vector z =
[
vx β r

]>
and the input vector u =

[
δ F r

x

]
. As with the two-state model, the

side-slip dynamics β̇ comes from dividing the lateral dynamics by the longitudinal velocity,

CHAPTER 2. VEHICLE MODELS 42

using the approximation β ≈ vy
vx

. We have the following system model:

v̇x = vyr +
1

m
(F r

x − F f
y sin δ) (2.46a)

β = −r +
1

mvx
(F r

y + F f
y cos δ) (2.46b)

ṙ =
1

Iz
(LfF

f
y cos δ − LrF r

y) (2.46c)

With the new system model, we have three equations but five unknowns, the three states
vx, β, r and the two inputs δ, F r

x . Again, we have an underdetermined system of equations, so
we fix the longitudinal velocity vx and the steering angle δ, and then solve for the remaining
variables. The main difference in our analysis between two and three-state models is that we
can now observe how the rear longitudinal force F r

x behaves under steady state conditions.
To conduct the analysis, we first fix the longitudinal velocity vx, then grid the steering

angle δ, and repeatedly solve equation (2.46) for the equilibrium states under the same three
conditions as before. In all three conditions, the lateral force from the front and rear tires
follow the Pacejka tire model. The difference between the cornering and drifting conditions
lies in the constraint of the rear longitudinal force F r

x . Under typical cornering conditions,
we leave the rear longitudinal force as a free variable in the nonlinear solver. Under drifting
conditions, however, we constrain the rear force to be equal to the maximum value available
provide by the friction circle:

F r
x = ±

√
(µF r

z)2 − F r
y (2.47)

This constraint enforces tire saturation in either the clockwise or counter-clockwise directions.
We use the same parameter values as in the two-state model to solve the system of equations.
A sample MATLAB program for this three-state equilibrium analysis is given in Appendix
A for reference.

Figures 2.21 through 2.25 illustrate the equilibrium values for the states and inputs across
gridded steering angles δ for a fixed longitudinal velocity of vx = 1.2 [m/s]. The results for
the equilibria slip angle and yaw rate mimic the results for the two-state model, which show
small values for cornering and large values for drifting. The new insight comes from the
equilibrium values for the rear longitudinal force F r

x in Figure 2.23. The rear force reaches
saturation for large steering angles, regardless of the constraint imposed by equation (2.47),
as shown by the converging curves for the cornering and drift conditions. Also, based on
the magnitude of the longitudinal rear force, the lateral force takes a large portion of the
total frictional force available during drift, which accounts for the large lateral motion or
‘side-ways’ motion that we observe during drift maneuvers.

Figures 2.26 and 2.27 illustrate graphically the motion of the vehicle under drift condi-
tions, with vectors of the direction of the lateral force on the tires.

CHAPTER 2. VEHICLE MODELS 43

-20 -15 -10 -5 0 5 10 15 20

Steering angle δeq [deg]

-40

-30

-20

-10

0

10

20

30

40

S
id
e
sl
ip

an
gl
e
β
e
q
[d
eg
]

Side slip angle βeq [deg]

Cornering
-F r saturation
+F r saturation

Figure 2.21: The side slip angle β does not grow beyond a couple of degrees under normal
cornering conditions (black circled curve). Under rear tire saturation (blue and red curves),
the slip angles grow to a large value.

CHAPTER 2. VEHICLE MODELS 44

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

-150

-100

-50

0

50

100

150

Y
aw

ra
te

r
e
q
[d
eg
/s
]

Yaw rate req [deg/s]

Cornering
-F r saturation
+F r saturation

Figure 2.22: The yaw rate r scales linearly with the magnitude of the steering angle under
typical cornering conditions (black circled curve). Under rear tire saturation (blue and red
curves), the yaw rate maintains a large value.

CHAPTER 2. VEHICLE MODELS 45

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

F
r,
e
q

x
[N

]

Rear Longitudinal Force F r,eq
x [N]

Cornering
-F r

y saturation

+F r
y saturation

Figure 2.23: The rear longitudinal force F r
x scales quadratically with the steering angle under

cornering conditions. Under drift conditions (blue and red curves), the rear force takes the
maximum value possible available from friction, which scales approximately linearly with
the steering angle.

CHAPTER 2. VEHICLE MODELS 46

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

R
ea
r
L
at
er
al

F
or
ce

F
r,
e
q

y
[N

]

Rear Lateral Force F r,eq
y [N]

Cornering
-F r saturation
+F r saturation

Figure 2.24: The rear lateral force F r,eq
y scales linearly with the magnitude of the steering

angle under typical cornering conditions (black circled curve). Under drift conditions (blue
and red curves), the rear lateral force is saturated and shares the total available frictional
force with the rear longitudinal force F r,eq

x .

CHAPTER 2. VEHICLE MODELS 47

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

0

0.5

1

1.5

2

2.5

T
ot
al

R
ea
r
F
or
ce

F
r,
e
q
[N

]

Total Rear Force F r,eq [N]

Cornering
-F r saturation
+F r saturation

Figure 2.25: The total rear force under cornering conditions scales approximately linearly
with the steering angle. This result makes sense as the lateral force operates in the linear
region of the tire model. Under drift conditions (blue and red curves), the rear tires are
saturated for all steering angles, which results in the straight horizontal line at the top at
value (µF r

z).

CHAPTER 2. VEHICLE MODELS 48

Figure 2.26: Top: The diagram shows the tire forces acting on the vehicle over three time
steps. The blue arrows indicate the force vectors acting on each tire. The black arrow is the
velocity vector, and the angle between the dashed line and the velocity vector is the slip angle
β. Bottom: The bottom diagram shows the complete steady state motion of the vehicle.
Equilibrium values: veqx = 1.20 [m/s], βeq = 36.63 [deg], req = −79.99 [deg/s], δeq = 20 [deg],
F r,eq
x = 1.5535 [N], F 2r,eq

y = −1.6587 [N].

CHAPTER 2. VEHICLE MODELS 49

Figure 2.27: Top: The diagram shows the tire forces acting on the vehicle over three time
steps. The black arrow is the velocity vector, and the angle between the dashed line and
the velocity vector is the slip angle β. Bottom: The bottom diagram shows the complete
steady state motion of the vehicle. Equilibrium values: veqx = 1.20 [m/s], βeq = −36.63 [deg],
req = 79.99 [deg/s], δeq = −20 [deg], F r,eq

x = 1.5535 [N], F r,eq
y = 1.6587 [N]. The equilibrium

state represents a mirror opposite of the state in Figure 2.26.

CHAPTER 2. VEHICLE MODELS 50

We conclude the section on equilibrium analysis by examining how changes in the nominal
longitudinal velocity vx affect the resulting equilibria plots. The purpose of studying how
parameter variation affects the resulting distribution of equilibria would be to check if any
bifurcations emerge from our system. Bifurcations occur when small parameter variations
cause sudden qualitative changes in the behavior of the system.

Figures 2.28 through 2.30 all illustrate the changes in the equilibrium values when the
velocity changes by ± 0.5 [m/s]. The most notable qualitative trend by increasing velocity
is that the magnitude of all equilibrium variables (β, r, F r

x) decrease as the longitudinal
velocity increases for all values of steering angles δ. This trend implies that as the vehicle
travels faster, the steering angle does not need to reach as large values as at low speeds in
order to saturate the tires. From Figure 2.28, for example, at vx = 1.2 [m/s] the vehicle
transitions from cornering to drifting at δ ≈ ±20 [deg], as indicated by the intersection of
the circled and crossed black curves. At vx = 1.7 [m/s], however, the transition occurs at
δ ≈ ±10 [deg]. Conversely, for slower speeds, the transition occurs at a larger steering angle.
Qualitatively, at higher speeds, the drift will not look as exaggerated as at lower speeds,
since the magnitude of the counter-steer and the slip angle (sideways motion) are relatively
small.

2.8 Conclusion

This chapter provided an overview of vehicle models and tire models and examined the
merits and limitations of each model, especially in the content of extreme maneuvers like
drift. This chapter also examined the phenomenon of drift by conducting a steady state
analysis and discussing the resulting equilibrium states and inputs.

CHAPTER 2. VEHICLE MODELS 51

-20 -15 -10 -5 0 5 10 15 20

Steering angle δeq [deg]

-50

-40

-30

-20

-10

0

10

20

30

40

50

S
id
e
sl
ip

an
gl
e
β
e
q
[d
eg
]

Side slip angle βeq [deg]

vx = 0.7 [m/s]
vx = 1.2 [m/s]
vx = 1.7 [m/s]

Figure 2.28: During drift conditions, the magnitude of the side slip angle β decreases as the
magnitude of the longitudinal velocity increases for all steering angles.

CHAPTER 2. VEHICLE MODELS 52

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

-150

-100

-50

0

50

100

150

Y
aw

ra
te

r
e
q
[d
eg
/s
]

Yaw rate r
eq [deg/s]

vx = 0.7 [m/s]
vx = 1.2 [m/s]
vx = 1.7 [m/s]

Figure 2.29: During drift conditions, the magnitude of the yaw rate r decreases as the
magnitude of the longitudinal velocity increases for all steering angles.

CHAPTER 2. VEHICLE MODELS 53

-20 -15 -10 -5 0 5 10 15 20

Steering angle δ
eq [deg]

0

20

40

60

80

100

120

R
ea
r
L
on

gi
tu
d
in
al

F
or
ce

F
r,
e
q

x
[N

]

Rear Longitudinal Force F r,eq
x [N]

vx = 0.7 [m/s]
vx = 1.2 [m/s]
vx = 1.7 [m/s]

Figure 2.30: During drift conditions, the magnitude of the rear longitudinal force F r
x de-

creases as the magnitude of the longitudinal velocity increases for all steering angles.

54

Chapter 3

Berkeley Autonomous Race Car

This chapter presents a robotic platform developed by the author in the Model Predictive
Control lab called the Berkeley Autonomous Race Car (BARC) Project. The BARC platform
started as an initiative to bring a low-cost, open-source automotive robot for research and
instructional purposes related to autonomous driving. Since the launch of the project in
2015, the platform has gone through many hardware modifications and software revisions to
enhance the usability of the platform. The bill of material and source code for BARC have
been provided online at http://www.barc-project.com/ in an effort to make our research
contributions more accessible to others in the field. To the best of the author’s knowledge,
the BARC platform has been replicated or been the basis of similar mobile robotic platforms
at research institutions across the world, including Seoul National University, Israel Institute
of Technology, Clemson University, and ETH, among others.

The BARC platform revolves around a 1/10 scale remote control (RC) that serves as the
primary mechanical system. The RC is equipped with a suite of sensors, a microcontroller,
cabling, and other peripherals that enable users to program the RC for autonomous driving
applications. Figure 3.1 shows the current version of the BARC platform and Figure 3.2
shows the first generation model, which is showcased in many of the project videos uploaded
online.

The BARC platform has served as a stable, easy-to-use platform for both research and
instruction. A number of research projects, including autonomous drifting, learning-based
MPC for racing, vision-based lane keeping, among other algorithms, have all been developed
and tested on the BARC. Additionally, the BARC platform has served as the robotic platform
for a number of student projects and courses at UC Berkeley, including ME 190J - Model
Predictive Control, ME C 231B - Experiential Advanced Control Design II, and ME 131 -
Vehicle Dynamics and Control.

At a high level, the BARC platform can be divided into three sections: mechanical design,
electrical design, and software design. In this chapter, we give a brief overview of other
platforms in the research community, then provide an overview of the design considerations
and decisions that went into the development of the BARC platform, and then discuss the
recent applications of BARC in the classroom.

http://www.barc-project.com/

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 55

Figure 3.1: Berkeley Autonomous Race Car (BARC) - second generation.

Figure 3.2: Berkeley Autonomous Race Car (BARC) - first generation.

3.1 Platform Review

Over the past five years, several small-scale robotic platforms have emerged in an effort
to advance research and development in the space of autonomous driving. Many of these
platforms are based on a small-scale race car, typically 1/10 scale, fitted with a mechanical
scaffold to support the online electronics.

Karaman and others from MIT Lincoln labs jointly launched an open-source platform
called, RACECAR [27], based on a 1/10-scale Traxxas rally car equipped with a sensor
stack that includes LiDAR, IMU, a depth camera and a stereo camera. RACECAR uses the
Nvidia Jetson TX1 as the main microcontroller to run the control algorithms and perform
vision based control. The TX1 features 256 Nvidia CUDA core and a 64-bit CPU, making
it a high-performing micro-controller. At the time of writing, Nvidia has launched its sec-
ond generation micro-controller called the TX2. Overall, the RACECAR platform serves
as strong robotic platform for research and education, and has been used for educational
outreach projects targeted to high school students.

The University of Pennsylvania has launched a similar 1/10 scale robotic platform and

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 56

Figure 3.3: The RACECAR is an open-source platform from MIT. Image from [27]

competition series called f1/10th [8] based on a the Traxxas NOS Deegan 38 Rally 1/10
scale car. The hardware is similar to that of the RACECAR from MIT, with an Nvidia
Jetson TX1 as the onboard microcontroller and a suite of sensors, including the SparkFun
9 DoF Razor IMU, Hokuyu UST-10LX Scanning Laser Rangefinder (LiDAR), and ZED 2K
Stereo Camera, and an additional 3 cell, 11.4 V LiPo battery to support the higher power
requirements of the onboard electronics. The home website http://f1tenth.org/index also
includes a bill of materials and documentation to replicate the platform.

Figure 3.4: The f1/10 is an open-source platform from Penn Engineering. Image from [8].

Regh and others from the Georgia Institute of Technology have developed a 1/5th scale
platform called AutoRally [20]. The RC is based on the HPI Baja 5SC 1/5 Gas RC and has
a sensor suite that includes a Flea3 Color USB 3.0 Camera, a Microstrain 3DM-GX4 -25
IMU and a NavTech Eclipse P306 GPS module. The computing platform is based on ASUS
Z170I motherboard with an Intel LGA 1151 processor. The platform is very specialized
with an exhaustive bill of materials that specifies many of the mechanical components for
the RC chassis, including the ESC, servo, suspension system, among other parts. This type
of construction differs from the chassis in the BARC, RACECAR, and f1/10 platforms,
which are sold as complete ready-to-go units from distributors, in that several mechanical

http://f1tenth.org/index

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 57

components are acquired separately from the chassis frame. Additionally, the HPI Baja
5SC 1/5 RC uses gasoline as the energy source for the engine, whereas the other 1/10 scale
platforms use either NiMH or LiPo batteries.

Figure 3.5: The AutoRally Robot is a testbed for perception and control from the Georgia
Institute of Technology. Image from [20].

Within the last couple of years, a community of hobbyists and engineers have developed
a low-cost robotic platform called Donkey. The chassis is based on a 1/16 Scale Truck from
Exceed with a Raspberry Pi 3 as the computing hardware. The primary sensor is the wide-
angle Raspberry Pi camera. The Donkey car has become popular among electronic hobbyists
because of the low-cost and organized competitions and meetup to promote the development
of the platform.

Figure 3.6: Donkey is an open source project for self-driving cars. Image from [34].

In terms of commercial products, an Israeli company called Cogniteam has released
the Hamster Micro UVG [4]. The chassis is custom designed from Cogniteam and comes
equipped with two Raspberry Pi 3 as the computing platform. The sensor suite includes a
360 degree LiDAR, HD Camera, 3D Compass, GPS and wheel encoders.

Overall, all these RC platforms, from research groups, hobbyists, and companies have
developed into strong platforms for specific applications and target audiences. The BARC

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 58

Figure 3.7: Hamster is a small robust autonomous robot for research and prototype devel-
opment from Cogniteam. Image from [4].

platform we present in this thesis is best categorized as a relatively low-cost, open-source RC
platform for research and instruction. The bill of material for the BARC platform is about
650 USD at the time of writing (excluding LiDAR and GPS) and has an assembly time of
two to three hours. The RACECAR and f1/10 platforms share a lot of similarities with
the BARC in terms of chassis selection, but differ in choice of computing hardware, power
distribution scheme and sensor suite. The f1/10 has a more powerful computational platform
with the Nvidia TX1 (≈500 USD) because of the GPU, but it comes at a cost six times that
of the Odroid XU-4 (≈70 USD). The BARC platform uses a single battery to power the
actuators and on-board electronics, whereas other platforms have two separate batteries,
which adds to weight and cost. Additionally, the BARC platform takes an estimated three
hours to assemble, which is comparable to the f1/10, but the bulk of assembly time with the
BARC platform comes from preparing the encoder units (e.g. soldering, coloring, mounting),
which other platforms, including f1/10, do not include.

3.2 Mechanical Components

The main RC mechanical components of the vehicle include the chassis, suspension, trans-
mission system and wheels. The on-board electronics control the mechanical system. We
discuss the selection of the chassis and the fabricated components to support and mount the
electronics.

Chassis

The BARC platform uses the Ford Fiesta ST Rally 1/10 scale electric RC car from Traxxas
as the chassis. The Rally RC comes as a ready-to-go unit, equipped with a Titan 12 turn 550
motor, a Traxxas 2056 High-torque servo, XL-5 Electronic Speed Control (ESC) unit and a
2.4 GHz Top Qualifier (TQ) Radio Transmission system for remote control. The Ford Fiesta

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 59

has a suspension system with oil-filled shocks, and has a four-wheel drive configuration, with
a transmission shaft transmitting torque from the rear axle to the front axle. The RC car
is built larger and more rugged than other 1/10-scale RC cars because it is designed for
outdoor rally racing.

Figure 3.8: Top view of Traxxas Ford Fiesta ST Rally 1/10.

(a) XL-5 Electronic Speed Control (b) Titan 12 turn 550 motor

Figure 3.9: The Traxxas Ford Fiesta comes equipped with a Bushed DC motor and an
Electronic Speed Control unit.

The Titan 12-turn 550 motor operates as a brushed DC electric motor. Internally, the
motor has a coil that is wrapped around armatures that extend from a central axle. Magnets
are placed along the interior surface of the motor case, and when a current is passed through

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 60

the coil, a magnetic force is induced that causes the armature to rotate. To make the
armature rotate in the same direction, a commutator at one end of the motor makes the
current reverse direction. Brushed DC motors are identified by the two terminals (positive
and negative) at the side. Brushless DC motors, on the other hand, usually have three
terminals.

The XL-5 Electronic Speed Control (ESC) unit controls the amount of current and voltage
that is delivered to the motor. The ESC has four power ports, two ports (positive and
negative terminals) are for power from the onboard battery, and the other two ports are to
deliver voltage and current to the motor. The ESC receives control signals in the form of
pulse width modulation (PWM) signals from the receiver-transmitter box through Futaba
cables. The receiver-transmitter box in turn receives command signals wirelessly from the
user through the remote-control joystick.

Pulse-width modulation (PWM) signals are modulated voltage signals that can transmit
encoded information or power through a voltage square wave. The PWM signal operates
only at either high or level and transmits information based on the duty cycle, the fraction
of the time the voltage is high over a signal period. Figure 3.10 illustrates the relationship
between duty cycle and average power delivered (dashed-red line). The Traxxas XL-5 ESC
interprets the PWM signals as voltage levels, and then applies gains to those signals which
are then sent to the motor. For our platform, we directly send PWM signals to the ESC to
control both the motor and the servo.

In the initial planning of the BARC platform, we considered designing a custom chassis,
but due to time constraints and performance requirements, we decided to use a chassis from
a professional RC manufacturer. The RC chassis from Traxxas has already been engineered
with performance and cost in mind, and usually comes with product warranties and reliable
customer service. One particularly important downside to note, however, is the uncertainty
of when the product will be discontinued and updated with a newer model. We encountered
this problem with the first generation BARC platform based on the Basher RZ-4 1/10 Rally
Racer from HobbyKing. The chassis was selected when the project began in fall 2015 due
to low-cost, good performance, durability, and high availability, but as of summer 2017, the
Basher model was discontinued and we had to switch to another RC model as the primary
chassis for the BARC platform.

Manufactured Components

The BARC platform requires mechanical structures to support to the microcontroller and
sensors. We designed a ‘top deck’ plate, shown in Figure 3.11, to overlay on the central
part of the chassis. Four holes on the perimeter of the deck are used to mount it to the
Traxxas chassis using hexagonal M3 standoffs. The other holes in the interior are used to
fasten sensor mounts to the deck. We choose Aluminum 5052-H32 as the plate material with
chromate conversion coating using Alodine as a finish to ward off corrosion.

The interior holes are fitted with CLSM3-2 Self-Clinching Nuts from PennEngineering
(PEM). The self-clinching nuts adheres itself to the plate through application of a parallel

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 61

0V

0V

0V

5V

5V

5V

t

t

t

25 % Duty Cycle

50 % Duty Cycle

75 % Duty Cycle

Figure 3.10: Pulse Width Modulation can encode information or control power delivered to
electrical devices. From top to bottom, the PWM curves illustrate 25%, 50%, and 75% duty
cycles, respectively. The red dashed line shows the average voltage value over the cycle. A
higher duty cycle means more power is delivered to connected devices.

squeezing force on either side of the nut. These nuts have an M3 internal thread that allows
M3 screws to be fastened to it securely. The nuts are plated with zinc to prevent material
damage from using stainless M3 screws. The top plate is manufactured using a water jet
cutter. The schematic for the top plate is included in Appendix B.

In addition to the main plate covering chassis, we also designed mounts for the sensors.
All the sensor mounts are fabricated through a fused deposition modeling process via a 3D
printer. All sensor components are fabricated using Acrylonitrile Butadiene Styrene (ABS).
The latest designs for the sensor mounts are available on the BARC project website.

3.3 Electrical Components

Autonomous vehicles need sensors to gather information about the motion of the vehicle
and about the surroundings, and a microcontroller to process that information and make
control actions. In this section, we outline the sensor selection and the computing platform
for the BARC platform. We choose low-end, low-cost devices in order to keep the cost of

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 62

Figure 3.11: Top view of the BARC chassis base plate.

the platform relatively low.

Inertial Measurement Unit

The inertial measurement unit (IMU) measures linear acceleration, angular velocity, and
orientation using a combination of accelerometers, gyroscopes, and magnetometers. We use
the myAHRS+ IMU from HardKernel, shown in Figure 3.12a, for the BARC platform due
to low cost, reasonable performance, and online support and documentation.

From the specification data [12], the myAHRS+ IMU can measure up to ±16g for ac-
celeration, ±2000 degrees per second (dps) for rotation, and ±1200µT for orientation. The
IMU has a micro-USB port that is used to read measurement data through serial commu-
nication. Figure 3.12b shows the mount designed to house the IMU. We place the IMU on
the underside of the chassis near the center of gravity of the chassis.

Encoders

Encoders provide rotational information about spinning parts. We designed a basic encoder
unit using the QRE113 Miniature Reflective Object Sensor from SparkFun, shown in Figure
3.13a. The sensor has a phototransistor that sends a signal based on the amount of light
reflected from a close surface. We design a mount and a disk with colored partitions for the
sensor to detect. The encoder is mounted on the hub of each tire and the disk is mount on
the interior rim of each tire, as shown in Figures 3.13b and 3.13c respectively. Whenever
the disk segment in front of the sensor switches from a light to dark surface, the QRE113

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 63

(a) myAHRS+ IMU sensor (b) ABS mount for IMU

Figure 3.12: The myAHRS+ (Altitude Heading Reference System) from HardKernel features
an accelerometer, gyroscope, and magnetometer.

sends a signal which is detected by the microcontroller. The microcontroller has an interval
variable that keeps a tally, and increments it every time a switch occurs.

(a) QRE113 Sensor (b) Encoder mount (c) Encoder disk

Figure 3.13: The encoder unit consists of a QRE113 Reflective Object Sensor from SparkFun
that detects changes in changes from the encoder disk.

Using this encoder setup, we estimate the velocity of the wheel using two methods. In
the first method, assuming entire forward or backward motion, we count the number of times
the disk has alternated from a dark to light partition, over a fixed time interval, and then
scale the result to the wheel’s geometric proportions.

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 64

∆xp

rp

QRE113 Sensor

Figure 3.14: Velocity is computed by counting the number of switches between light and dark
partition over a fixed time interval, and then using geometric information of the encoder unit.

We estimate the velocity every ∆t = 50 ms, using the following approximation:

v ≈ ∆s

∆t
(3.1a)

=
(ck − ck−1)∆xp

∆t
(3.1b)

=
2(ck − ck−1)πrp

N∆t
(3.1c)

where ck is the total number of counts at time step k, ∆xp is the arch distance of a single
partition (measured along the circle in front of the sensing unit), rp is the radius from the tire
hub to the sensor, and N is the number of partitions (in our disk design, eight partitions).
Figure 3.14 illustrates the geometric quantities in the velocity approximation.

Alternatively, we can estimate the velocity by measuring the time elapsed by rotating
just one partition. This method requires precise timing information of the moment when the
sensor detects a transition between a light and dark partition. In terms of implementation,
we use interrupt signals and timing functions to compute the amount of time elapsed. The
velocity is estimated as follows:

v ≈ ∆s

∆t
(3.2a)

=
2πrp

N(tk − tk−1)
(3.2b)

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 65

where tk is the time for the k-th transition between a light and dark partition.
Between equations (3.1) and (3.2), the latter provides a better method of estimating

velocity. Equation (3.1) only provides integral counts for the number of partitions rotated,
so the estimate will always return a lower bound for the velocity. In practice, however,
equation (3.1) works better at high speeds and equation (3.2) works better at low speeds.

Ultrasound

Sonar sensors provide measurements of distances between the sensor and the nearest object
along the line of sight using high frequency sound waves. These sensors measure the time
of flight for a sound wave that has been transmitted from and reflected back to the sensor
from nearby objects. The sensor then maps the flight time to a distance measurement.

(a) LV-MaxSonar-EZ1 (b) Sonar mount

Figure 3.15: The Ultrasonic Range Finder provides proximity measurements from zero to
six meters.

We use the Ultrasonic Range Finder-LV-MaxSonar-EZ1 from MaxBotix to detect nearby
objects. This sensor provides limited environmental information, since it only emits a single,
straight sound beam. Nonetheless, for the low cost, this sonar sensor is useful for local object
detection.

Global Positioning

Global position systems provide information about location on earth in terms of longitude,
latitude, and altitude coordinates. GPS sensors listen for signals received from satellites
orbiting the earth, and then use timing information from at least three satellites to estimate
its position using trilateration. A differential GPS system builds on the conventional GPS
system by adding a ground-based, fixed base station with a known position. These stations
then broadcast corrections to local GPS sensors to update their position estimates.

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 66

We use the Reach RS+ differential GPS system from Emlid for position estimates. The
product is still in the early stages of development at the time of writing as the company
is a start up, but the product provides ±2 cm accuracy for a price point (≈ 700 USD)
significantly lower than other high-end systems (> 10000 USD).

Figure 3.16: The Marvelmind GPS kit is designed to provide ±2 cm accuracy for indoor
navigation.

For indoor localization, we use the Indoor Navigation System kit from Marvelmind. The
kit consists of four beacons and one rover unit that use sonar measurements to triangulate
position. The rover unit is mounted on the mobile robot and measures the timing of sound
waves from beacons to triangulate its position. The kit provides centimeter level accuracy
and works well when the beacons are fully charged and mounted in a room with solid walls.

Camera

Cameras provide a rich source of environmental information. With the growth of techniques
like deep learning for object detection and image segmentation, cameras have become an
increasingly important sensor to include on any robotic platform. Cameras for robotic appli-
cations commonly come in one of three forms: monocular, stereo, and 3D-RGBD. Monocular
cameras come equipped with one image sensor and one set of lenses, while stereo cameras
come with two sensors and two sets of lenses. Multiple sensors enable image-processing al-
gorithms to estimate depth for the objects inside the image based on displacements. RGBD
cameras are a recent technology and come with a color (RGB) camera and a dedicated depth
(D) sensor unit. Devices like the Microsoft Kinetic initially used an infrared projector and
infrared sensor to get depth information.

Among the three types of cameras, monocular cameras sell for the lowest price by a wide
margin. For our BARC platform, we use a low-cost (≈50 USD) 2 Mega-Pixel 1920x1080P
Monocular camera from ELP. The camera has 180 degree wide-angle lens with a USB 2.0
port to transmit image data. The camera can be configured to deliver 280 x 720 pixel images
at 60 frames per second (fps). For most of the image-based control applications, however,
we use 480 x 640 P at 30 fps. We designed a base fixture and camera-head mount to position
the camera at the front of the chassis, looking forward to the front of the vehicle. Figures

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 67

(a) ELP 2MP Camera (b) Head mount (c) Base fixture

Figure 3.17: The ELP 2MP Monocular Camera can deliver 280 x 720 P images at 60 fps

3.17b and 3.17c show the camera head mount and base fixture, respectively.

LiDAR

Light detection and ranging (LiDAR) sensors have also become popular in robotics appli-
cation for generating high-resolution maps. LiDAR sensors measure distance information
by emitting pulsed laser light at objects in front of the sensor and then timing the return
reflected pulses.

Figure 3.18: The RP LiDAR A2 scans 360 deg with a distance range of 12 meters.

Aside from differential GPS kits, LiDAR sensors cost significantly more than other sensors
and computing hardware. We have not extensively used LiDAR for research projects on the
BARC platform, but we have found the RP LiDAR by Slamtec to work well for object
detection. At the time of writing, the RP LiDAR sells at a price (≈500 USD) a fraction of
the cost of high-end LiDAR sensors from Velodyne (4000 USD+). Given recent trends in
the market, however, these high-end sensors will likely become less expensive.

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 68

Networking components

Wireless routers provide access to Internet and establish private networks. We use a wireless
router to remotely access onboard computing hardware and launch experiments on the BARC
platform.

(a) ZyXEL Wireless Router (b) Edimax EW-7811Un Wi-Fi USB

Figure 3.19: The ZyXEL router and Edimax Wi-Fi USB devices can both transmit data up
to 150 Mbps.

During the initial stages, we used the ZyXEL MWR102 because of the low cost, but later
started using the Edimax EW-7811Un Wi-Fi USB instead. The Edimax Wi-Fi USB uses
the RTL8188CUS chipset, which is compatible with an open-source utility called hostapd
that creates wireless access points. In essence, this software enables the Edimax dongle to
behave as a wireless router. This software-enabled capability is useful because the Edimax
Wi-Fi dongle takes smaller form factor and costs less than the ZyXEL router.

Computing Device

The BARC platform uses the Odroid XU-4 from HardKernel as the primary computing
device. The Odroid XU-4 is a single-board, credit-card sized computer that has nearly all
the capabilities of a laptop, albeit with less processing resources and a small form factor.
The Odroid XU-4 runs on a Samsung Exynos 5422 Cortex-A15 GHz and Cortex-A7 Octa
core CPU based on the ARM architecture. Among the various architectures for embedded
devices (e.g. AMD, ARM, ColdFire, TriCore, PowerPC, x86), ARM has become prevalent
in small computing devices like Odroid, Freedom Board, Raspberry Pi, Arduino, TX2 as
well as in mobile devices.

The Odroid uses an eMMC (electronic Multi-Media Controller) chip as the primary
storage for the operating system, applications and user data. eMMC chips are a type of
solid state storage technology prevalent in smart phone devices. The Odroid XU-4 is also
equipped with a slot to use microSD cards as the storage medium, but eMMC read / write
speeds are faster.

The Odroid XU-4 comes equipped with a set of common peripherals, like 1 USB 2.0 port,

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 69

(a) Odroid XU-4 front (b) Odroid XU-4 back

Figure 3.20: The Odroid XU-4 runs on an 8-core ARM Cortex processor.

2 USB 3.0 ports (stacked vertically), an Ethernet port, an HDMI connector, a 5V / 4A DC
power connector and a fan. There is also arrays of GPIO pins around two edges of the XU-4,
but they are not used in our system configuration.

It is important to note that the Odroid XU-4 should be supplied with a steady voltage of
5 V and current of up to 4 A, especially with the newer models, as suggested by HardKernel.
We use a voltage regulator to provide a stable 5 V output, with up to 5 A of current. In the
past, we discovered that voltage regulators that output 3 A or less, especially with the new
Odroid XU-4 models, did not supply sufficient current for the Odroid to boot. As a result,
the Odroid would fail to load the operating system, and the system would shut down and
attempt to reboot, sometimes corrupting data in the process.

Depending on the model, the XU-4 comes with an electric fan mounted above the CPU
to provide temperature regulation when the chip gets warm. Some models use passive heat
pipes instead.

The compute power of the XU-4 is not directly comparable with a desktop or PC running
on Intel chips, but it still serves as a powerful computing platform for a relatively low cost
(≈75 USD). Compared to a Raspberry Pi 3, the Odroid offers better performance in terms
of integer and floating point calculation and memory bandwidth according to the Unixbench
benchmark scores [13]. Among other candidate computing devices, like the Raspberry Pi,
Nvidia TX2, BeagleBond, Huawei HiKey 960, we chose the Odroid XU-4 because it offered
strong computing performance for a low price. The Nvidia TX2 offers a lot of promise
for research in embedded controls performing intensive imaging processing or running deep
neural nets, which exploit the structure of the net and parallelize operations by using the
GPU architecture. For the BARC platform, however, we focus on optimal model-based
control techniques, like model predictive control, which do not benefit as much from the
GPU architecture. Future direction for research in the lab may incorporate more vision-
based algorithms, in which case, adopting a platform like the TX2 would be appropriate.

In addition to the Odroid, we also use an Arduino Nano to perform some computations,
but mostly perform communication with the actuators and sensors through the general
purpose input/out (GPIO) pins. The Arduino Nano, shown in Figure 3.21a, features the

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 70

(a) Arduino Nano (b) Arduino Nano Expansion Shield Module

Figure 3.21: The Arduino Nano features the ATmega328 microcontroller with an AVR
architecture

ATmega328 microcontroller with an AVR architecture and has 22 digital IO pins and 8
analog IO pins. The Arduino has very low power consumption (≈19 mA) and takes a small
form factor (18 x 45 mm). The Odroid XU-4 also has a slot of GPIO pins, but we chose to
use the Arduino because we can use off-the-shelf, low-cost expansion boards to easily connect
to sensor with Futaba wires. Furthermore, the Arduino has extensive documentation and
examples that made software development much quicker. Figure 3.21b shows the expansion
board; the Arduino mounts in the center of the board. The Arduino has a mini-USB port
which is used to communicate serially with the Odroid XU-4. At a high level, the Odroid
XU-4 runs all the high level state estimation and control algorithms, then sends the command
signals to the Arduino. The Arduino, in turn, converts those commands into low level PWM
signals to send to the actuators. Sensors signals received by the Arduino are processed and
then transmitted to the Odroid.

Software Component

The Odroid XU-4 operates as a full-fledged embedded computer, running Ubuntu Mate
16.04 for ARM as the operating system (OS). As such, users need knowledge of basic
Linux commands to navigate file systems, setup configuration files and write software. We
have prepared image files available for download at the home website (http://www.barc-
project.com/) that already has several useful utilities and open-source software installed.
We also have a GitHub repository with the latest software for the BARC platform at
https://github.com/MPC-Berkeley/barc. The repository includes a folder with files that
set up environment variables and install additional useful utilities.

The BARC platform uses ROS, an open-source library and set of tools for programming
robots. The architecture abstracts low level details, like timing, communication protocols,
concurrency, and other processes by providing a simple programming paradigm with a well-
written, easy-to-use set of application programming interfaces (API). The ROS infrastructure
is build on the concepts of nodes, topics and messages. In short, a node is a computer program

http://www.barc-project.com/
http://www.barc-project.com/
https://github.com/MPC-Berkeley/barc

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 71

(i.e. file) that processes some data. That data is then packaged into a message format, and
then published, or broadcast, onto a topic, for other nodes to listen to. In other words, ROS
uses a many-to-many communication paradigm to decouple nodes, so that each node (or
process) can be written independently of the others. For an in-depth explanation, refer to
the tutorials and documentation at http://www.ros.org/.

In the field of robotics, researchers have begun to invoke cloud technologies to process
large amounts of information for artificial intelligence and machine learning applications, a
trend called “cloud robotics”. In light of these efforts to make data more accessible and
amenable to heavy processing, we incorporated cloud-service functionality to the BARC
platform, through which users can conduct experiments and then push all the data collected
to the cloud. The service is built from a local Django server running on the Odroid, and a
corresponding remote, master Django server running on an Amazon E2 server. The software
is based off an open-source project called Dator [47]. The software base has API functions
that we integrate into ROS so that after conducting an experiment, all signals are collected,
processed, stored locally and then uploaded online.

3.4 Power System Architecture

At a high level, the power system architecture for the BARC consists of the components:
the battery, the wires, and the electrical connectors.

Battery selection

The source of energy for the RC comes from the battery. The battery is an electro-chemical
cell that has an electric potential (i.e. voltage) that comes from a difference in potential
between the positive and negative electrodes. A battery consists of five major components:
electrodes - anode and cathode, separators, terminals, electrolyte, and a case. When an
electric load, like the motor, is connected to the battery, then current flows through the
circuit and generates a torque through the motor [6]. For RC vehicles, Nickel-Metal-Hybrid
(NiMH) and Lithium-ion batteries are common types. The chemistry and physical assembly
of each battery differ, but batteries are assessed in terms of storage capacity, discharge rate,
cost, weight, physical volume and safety.

Most RC batteries also come with a C-rate specification. The C-rate refers to the rate
at which a battery can charge or discharge all of its energy [46]. The normalized unit C-rate
is 1C, which indicates the rate at which a battery is fully charged or discharged in 1 hour.
A C-rate of 2C would indicate a charging (discharging) rate twice as fast, in 30 minutes.
Likewise, a C-rate of 0.5 C would indicate a charge (discharge) rate twice as slow, i.e. a
charge (discharge) period of two hours.

For the BARC platform, we use Lithium-Ion (LiPo) batteries because they can store
the same amount or more of electrical energy in a smaller form factor than NiMH battery.
Figure 3.22 shows the LiPo battery model we use for our platform. This battery supplies

http://www.ros.org/

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 72

Figure 3.22: Traxxas 7.4V 10000 mA LiPo battery.

power to both the vehicle actuators and the onboard computing hardware and sensors. We
chose a battery model with a large energy storage capacity. At full charge, the battery has
approximately (7.4 V x 10 A x 1 hr ≈ 266 kJ) of energy. By rough calculation, that amount
of energy can keep the Odroid XU-4, and all connected peripherals (e.g. Arduino, sensors,
wifi-dongle), powered on for roughly (266 kJ / (5V x 4A) ≈) 3.5 hours if it operates at
the maximum current rating. Of course, the vehicle actuators can consume a lot of energy
depending on speed and amount of steering, but in practice, we find the battery to power
the BARC platform can last for two hours, usually more.

Electrical Connectors

Electrical connectors for hobby vehicles (e.g. RC cars, RC planes and RC boats) range in
form factor, size, and electrical specifications. Typical considerations in port selection are
durability, current flow, ease of use (plug/unplug) and installation, contact pressure and cost.
For applications in which we need the motor to provide high torque to get to high speeds,
the electrical power system, wires and connectors, need to be able to handle high current
flow (high amperage) without burning up, while providing a firm contact pressure so that
the power is delivered from the battery to motor during high speed maneuvers, under which
the vehicle may experience high frequency vibrations. In this section, we briefly discuss the
various types of electrical connectors commonly used in hobby vehicles.

High-current connectors

Dean connectors (also known as T connectors) are two port, low-resistance, polarized con-
nects used heavily for RC applications. The name comes from the company that manufac-
tures them, W. S. Deans Corporation. The connectors are spring loaded to ensure a firm
connect when two pairs of Dean connectors are connected. The Dean connectors are rated
to handle 30 Amps of continuous load and provide firm contact pressure [37].

The XT60 connector is another type of high-current, low resistance connector. The
connector comes from a Hong-Kong based company. The connectors are made from nylon

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 73

Figure 3.23: Dean

with gold-plated spring pins to establish high surface area contact with the wires. The XT60
connectors, as the name suggests, are rated up to 60 Amps of continuous current draw [38].
The XT30 is another electrical connector from the same family, but of a smaller form factor,
and can handle up to 30 Amps continuous current draw.

Figure 3.24: XT60 Figure 3.25: Bullet

The bullet connector is one of the most prevalent electrical connectors in the domain
of RC products. The connectors are coated in 24K gold and provide low-resistance, large
contact area and a solder window to allow for easy installation. RC bullet connectors can
handle up to 80 Amps of continuous current and 120 Amps of short time-scale peak current
[36].

The EC family of connectors are similar in design and mechanism to the bullet connectors,
but vary in the size and current capacity. These connectors are more common among aircraft
RC vehicles than in vehicle RC vehicles. The EC2, EC3, EC5 connectors can handle up to
20 Amps, 60 Amps and 120 Amps, respectively, of continuous current [17] [18] [19]. The
required wire gauge differs among the EC connectors. EC5 can handle significantly higher
current flow than EC2, but requires a larger gauge wire.

The Traxxas connector is a proprietary connector made by Traxxas, an RC manufacturing
company based in Texas, that is primarily for Traxxas products. To the best of the author’s
knowledge, no public information about the current flow rating for the connect have been
provided in a specification sheet, but it is inferred that connector can handle up to 30 Amps,
since the limiting factor as marketed is the current limit of the wire used [41]. The Traxxas

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 74

(a) EC3 (b) EC5

Figure 3.26: EC family of connectors.

connector comes with a large black plastic housing and unique mating configuration such
that it is not possible to accidentally connect the poles backwards (i.e. reverse polarity
protection). The texture of the housing make the connector easy to grip and plug/unplug
two mating connectors. The Traxxas connector housing is larger than other options, so it is
best to use only when space is not a tight constraint.

Figure 3.27: Traxxas Figure 3.28: Anderson
power pole

The Anderson power pole connector is a proprietary connector by Anderson Powerpole
Product (APP) and has become a common connector for high power DC applications. As
with other connector families, the power pole connectors have a variety of housing options
and current rating specifications that are listed on the vendor website, but 15/30/45 current
ratings are common. The housing color also indicates the current rating. The Anderson
connectors differ from other connectors in that the positive and negative terminal are not
fixed to each other as with other connectors; a slot mechanism between the two ports allows
the positive and negative ports to readily attach and detach. This attaching/detaching
mechanism is particularly helpful when size and geometry constraints for the power system
are strict (i.e. limited space and wire routing options for power transmission).

Along with each connector, manufacturers also produce adapters to change from one type
of connection to another. Figure 3.29 illustrate an adapter converting from a Traxxas to a

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 75

Figure 3.29: Traxxas-
XT60 Adapter

Figure 3.30: XT60
splice

XT60 connector. Splicers, as the one shown in Figure 3.30, split power flow from one source
to multiple destinations. For BARC, we use both adapter and splicers to distribute power
to the motor and servo, as well as the onboard computing hardware and sensors. We discuss
this more in detail shortly.

Low-current connectors

Low-current connectors distribute power and channel information between low-power com-
puting devices and sensors. These sensors are found across the spectrum in small-consumer
electronic devices.

(a) Tamiya (b) Mini-Tamiya

Figure 3.31: Tamiya connectors.

The Tamiya connectors belong to a class of low-current electronic connectors that are
prevalent in RC model vehicles. The sockets for the Tamiya connectors make them firm
and stable when connected. It is a particularly common connection for battery packs. The
connector are designed for various current ratings depending on wire gauge and wire length,
but ratings from 5 A up to 15 A are available [39].

The JST is a common low-current connector from the Japanese company JST (Japan
Solderless Terminal) used in many electronic hobby products (e.g. batteries, RC vehicles,
and on some PCBs). Mechanically, the JST connector housing has mating male and female
connectors that slide until a latch holds the parts firmly together. The JST housing is
plastic, which also limits the current rating, since high current would cause the electrical
connector to become very hot, potentially melting the surround plastic. The JST connectors

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 76

Figure 3.32: JST Figure 3.33: XHP-2

are typically rated for 5 Amps or less. In spite of the limited current rating, JST connectors
are still prevalent in the RC community.

Figure 3.34: The Futaba cable is prevalent among low-powered actuators and sensors.

For our platform, we use Futaba connectors. Futaba connectors have become a de facto
standard for servos. Many RC vendor use Futaba connectors for transmitting command
signals between the ESC and the actuators. Because of their ubiquity in electronics, many
suppliers have designed ‘extension boards’ for micro-controller like the Arduino that include
Futaba cable interfaces. These boards enable users to quickly connect with sensors and
low-powered actuators without the need to solder. For BARC, we use an Arduino Nano
extension board to connect with encoders, RX-TX box, and command signal lines for the
servo and motor using the Futaba cable interface.

Power distribution

All electric hardware and mechanical actuators on the chassis receive power from the LiPo
battery. Unlike other platforms that use a separate power bank to deliver power to the
electric hardware, we choose instead to use one battery and distribute power to components
through splicers, adapters, and voltage regulators. Figure 3.35 illustrate the power flow for
all system components.

The voltage regulator provides a stable output voltage independent of the input load
and current, as long as the input voltage is above the specified threshold. We use a Drok

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 77

LiPo Battery

Electronic
Speed
Control
(ESC)

Voltage
Regulator

Brushed
Motor

Servo
Radio
System Odroid

Arduino CameraIMU GPS

Encoder

Figure 3.35: The Power distribution for BARC platform uses a single battery as the energy
source.

3005ADJ DC/DC voltage regulator to step down the battery voltage from 7.4 V to 5 V, and
output up to 5 A of current to power the Odroid. Previously, we had used the FPV voltage
regulator, which also output 5 V, but only up to 3 A, which we have discovered, sometimes,
was not enough to power the Odroid XU-4 during boot up.

The BARC platform uses a single large battery as the only source of energy, which
reduces mass, volume, and cost by eliminating the need for separate energy supplies. We
use off-the-shelf manufactured adapters and splicers to achieve this configuration. The LiPo
battery and the ESC both come with the Traxxas style connector. Since Traxxas connectors
are only used with Traxxas products, we use adapters to convert to XT60 connectors. From
the battery, we can then use an XT60 splicer to distribute power to both the ESC and the
voltage regulator. The voltage regulator steps down the voltage to power the Odroid, which
in turn, powers all the peripherals. Another motivation for this power configuration stems
from ease of assembly. The Drok terminals require soldering to have the right connector, but
aside from that, all other cabling is easily connected by pushing the connectors together.

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 78

(a) Drok voltage regula-
tor

(b) FPV voltage regula-
tor

Figure 3.36: Voltage regulators output a stable direct current voltage independent of the
input voltage and current loads.

3.5 Teaching Applications

Since the project inception, the BARC platform has developed into a stable, robotic platform
suitable for research and instruction. At UC Berkeley, we have integrated the platform into
the curriculum of a ME 131 - Vehicle Dynamics and Control, by complementing academic
exercises in control design with hands-on implementation labs using BARC.

In spring 2016, we introduced the first generation platform into the curriculum by offering
students that opportunity to use BARC as a part of their final project. Many student teams
wrote and submitted final projects on tire-slip control and vision-based lane keeping. On the
BARC website, we uploaded videos of students who wanted to showcase their final project.

In spring 2018, we developed a series of lab exercises to make BARC a central component
of the curriculum. The goal was to bridge to gap between theory and experiment, as well
as teach the students a set of skills useful for robotics. According to feedback from stu-
dents, while the BARC platform represented a difficult challenge due to lack of experience
with robotics, many students found the course rewarding and beneficial to their engineering
education.

The sets of lab exercises for ME 131 spanned the following topics:

� Assembly for BARC platform

� Introduction to Linux and ROS

� Using BARC with ROS for actuator control

� System Identification for steering and longitudinal dynamics

� Cruise control for longitudinal dynamics using PID

� Path following using image-based control

CHAPTER 3. BERKELEY AUTONOMOUS RACE CAR 79

� Drift parking

Moving forward, the curriculum may change to include more content on control applica-
tions.

3.6 Conclusion

This chapter gave an introduction to the Berkeley Autonomous Race Car platform and an
overview of the design decisions for the mechanical, electrical and software components. We
developed BARC as a low-cost, open-source platform for research and instruction, and have
provided documentation and other resources on our BARC webpage and the Git repository
to allow others to easily replicate the platform at their home institutions.

80

Chapter 4

Planning and Control of Drift
Maneuvers

In this chapter, we discuss planning and control algorithms for drift maneuvers. The first
part of this chapter focuses on control design for autonomous steady state drifting. The
results from the equilibrium analysis in Chapter Two shape the design of the control policy.
The second part of this chapter transitions to the planning and control of two transient drift
maneuvers: drift parking and drift cornering. The focus is on the ideas of sample-based
path planning and mixed open-loop, closed-loop control as a complete framework to perform
autonomous drift maneuvers. The ideas presented to control each one of these maneuvers
are verified from experimental results using the BARC platform.

4.1 Autonomous Steady State Drifting

This section presents a controller that achieves autonomous steady state drift using only
onboard sensors. The controller is based on an infinite-horizon LQR formulation using a
single-track rigid body bicycle model with a Pacejka tire model. The state estimation is
based on an extended Kalman filter that uses only IMU, encoders and camera. Related
research projects have achieved autonomous drift in passenger or RC cars using motion
capture systems or a differential GPS, which provide very accurate measurements of position,
but require infrastructure that constrains the location of the experiment. One contribution
of this thesis is to demonstrate how to design a conventional LQR controller using only
onboard sensors to achieve steady state drift, which frees the experiment location. The
proposed control design is validated on the BARC platform.

Background

Drift, or high side slip cornering, occurs when a skilled driver intentionally maneuvers a
vehicle to cause loss of traction in the wheels, but still maintains control of the vehicle.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 81

As discussed in Chapter 2, drift causes a large side-slip angle β to emerge, which roughly
speaking, indicates to what extent the vehicle is traveling ‘side-ways’.

For sustained steady state drift, researchers have validated various control techniques.
Hindiyeh and coauthors developed a controller with a successive loop structure using a bicycle
model and a tire brush model [14]. Velenis and coauthors developed a sliding model controller
to maintain drift using a seven-state vehicle model with rear differentials [45]. Cutler used
reinforcement learning with a motion caption system to achieve sustained drift [5]. All
experimental validation for drift control algorithms have used a motion capture systems
and/or a differential GPS system [25] [15], which provide very accurate measurements of
position, but require infrastructure that constrains the location of the experiment.

Vehicle Model

The vehicle dynamics are captured using a single-track rigid body model with lumped rear

wheel and front wheels, discussed in Chapter 2. The state vector is z =
[
β vx ψ̇

]>
, where

β is the slip angle, vx is the longitudinal velocity, and r = ψ̇ is the yaw rate. The input

vector is u =
[
δ F r

x

]>
, where δ is the steering angle and F r

x is the rear force, assuming a
rear wheel drive system.

ψ

Lr
Lf

δ

v
β

E1

E2

ev1ev2

Figure 4.1: Vehicle model schematic

The equations of motion for the vehicle dynamics are obtained from the balance of linear
and angular momentum. The resulting set of differential equations in state space form are
given below:

β̇ =
1

mvx
(F f

y + F r
y)− r (4.1a)

ṙ =
1

Iz
(LfF

f
y − LrF f

y) (4.1b)

v̇x =
1

m
(F r

x − F f
y sin δ) + vxrβ (4.1c)

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 82

where F r
y is the lateral force at the lumped rear tire. The parameters m and Iz are the mass

and moment of inertia about the z-axis, respectively, and Lf , Lr are lengths from the CoG
to the axles, as shown in Figure (4.1). Recall that the dynamic equations in (4.1) formed
the basis of the stability analysis in Chapter 2. We use the equilibrium state as the reference
state for the control design. For the tires, we use a Pacejka model to estimate the lateral
force at high tire slip angles:

Fy(α) =

{
µFz sin(C tan−1(Bα)) : |α| ≤ αcr
Fmax
y sign(α) : |α| > αcr

(4.2)

where the front and rear tire side slip angles are:

αF = tan−1

(
β +

rLf
vx

)
− δ (4.3)

αR = tan−1

(
β − rLr

vx

)
(4.4)

and Fmax
y is the maximum lateral force as modeled by the ‘friction circle’, defined as follows:

Fmax
y =

√
(µFz)2 − F 2

x (4.5)

where µ is the coefficient of friction, Fz is the load force, B and C are fitting parameters,
and αcr is the critical slip angle, beyond which the tires cannot generate additional force:

αcr = tan

(
sin−1

(√
F 2
z − F 2

x

µFz

)
/C

)
/B. (4.6)

We remark that this vehicle model serves as the basis for the control design and the
extended Kalman filter for state estimation. One difference between the model in the con-
troller and estimator, however, lies in the equation for longitudinal dynamics. The estimator
incorporates more forces acting on the vehicle (like a nonlinear drag term) to provide a more
accurate estimate of vx, while the controller neglects those effects, simplifying the control
design process.

Equilibrium Analysis

The details of the procedure for equilibrium analysis are summarized at the end of Chapter
2. We briefly remark here that the equilibrium state and input, zeq and ueq, respectively,
come from the solutions to the system of nonlinear equations in ż = f(z, u) = 0.

The equilibrium states of the three-state model are shown in Figures (4.2) to (4.4). The
plots illustrate two kinds of equilibrium: normal cornering (circle) and drifting (asterisks).

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 83

Figure 4.2: Equilibrium sideslip angle vs steering angle

Figure 4.3: Equilibrium yaw rate vs steering angle.

Figure 4.4: Equilibrium rear wheel force vs steering angle.

For normal cornering, the sideslip angle is small, and the yaw rate and steering angle hold
the same sign. For drifting, the side slip angle and yaw rate are large, and the rear tire forces
are operating at the friction limits. Figures 4.2 through 4.4 illustrate the solutions to the

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 84

equilibrium analysis.
The control design is based on a single equilibrium point that is selected as the reference

state for the controller. Any equilibrium point under drift conditions (asterisks) can be
selected as the reference state.

Model Identification and State Estimation

We now discuss the procedure to identify the values of system parameters, in particular those
from the Pacejka tire model, for the BARC platform and then briefly discuss the formulation
of the state observer.

Longitudinal dynamics

The longitudinal dynamics primarily serve to provide information on the longitudinal velocity
of the vehicle vx. The equilibrium analysis discussed in the previous section assumes a
constant longitudinal velocity for the steady state drift maneuver, so it is important to build
a model of the longitudinal dynamics that can be incorporated into a state estimation scheme.
We use a longitudinal dynamics model that accounts for the effects of surface friction, drag
force, and the motor input force. Based on equation (4.1), we define the following expression
for the longitudinal rear force F r

x :

F r
x = Fmotor + Ff + Fdrag (4.7)

which consists of the input motor force Fmotor, the friction force Ff , and the drag force
Fdrag = CDv

2
x, where CD is the aerodynamic drag coefficient. In other words, the total

longitudinal rear input force F r
x that acts on the vehicle is not just the motor input force

coming from the actuator, but the net effect of forces from the motor force and friction
forces. We add these terms in our observer to enhance model fidelity, and hence compute
a more accurate estimate of the state. In the section on controller design, however, we
intentionally ignore the air drag force (i.e. assume F r

x = Fmotor) so that we can still apply
an LQR controller by exploiting the linear structure of the system.

In order to solve for the parameters Ff and CD, we perform a nonlinear least squares
optimization using the longitudinal model in (4.8), formulated as:

min
b,Ff ,CD

∣∣∣∣∣∣∣∣v̇x − 1

m
(Fmotor + Ff + CDv

2
x)

∣∣∣∣∣∣∣∣2
2

s.t. Fmotor = bumotor

b, Ff , CD ≥ 0

(4.8)

where Ff , CD, and b are optimization variables constrained to be positive. The objective
function aims to find the best friction coefficient values and input gain that make the longi-
tudinal dynamics expression Fx = max hold. To generate experimental data, we run short
step-input tests with a fixed steering angle, δ = 0 and fixed motor input umotor from the

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 85

BARC. Multiple tests are conducted with various step-input final values to get a representa-
tive sample of longitudinal velocity data from the RC. The servo is calibrated so that δ = 0
results in straight motion of the RC. From the system equations, straight motion only en-
gages longitudinal dynamics, so the optimization program can compute the best parameters
to make the expression Fx −max = Fx −mv̇x = F r

x −mv̇x = 0 hold.
The data for the optimization routine comes primarily from the encoder. The IMU did

provide longitudinal acceleration ax = v̇x measurements, but since the filtered signal was still
noisy, in the end, the longitudinal dynamic equation in the objective function of program
(4.8) was discretized so that velocity measurements from the encoders could directly be
used. The step-input motor signals were also known. The discretized optimization program
is shown below:

min
b,Ff ,CD

∣∣∣∣∣
∣∣∣∣∣
T∑
k=0

vx[k + 1]− vx[k]−∆t

(
1

m
(Fmotor[k] + Ff + CDvx[k]2)

)∣∣∣∣∣
∣∣∣∣∣
2

2

s.t. Fmotor[k] = bumotor[k] ∀k ∈ {0, 1, ..., N}
b, Ff , CD ≥ 0

(4.9)

Figure 4.5: The optimized frictional and input gain parameters accurately longitudinal dy-
namics of the RC.

The optimization routine in 4.8 is conducted for a number of step input tests, and the
resulting values of the optimization parameters are averaged. All the signals are expressed
as time series data with time index k. Figure 4.5 illustrates the prediction of longitudinal
model against experimental data.

Tire model Identification

The Pacejka model is used to describe the lateral forces that are produced from the tires.
The model parameters are identified using a nonlinear least squares routine that attempt to
equate both sides of the side-slip angle and yaw rate dynamic equations. The routine below

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 86

capture the full optimization program:

min
{β(k)}Nk=0,B,C,µ

N∑
i=0

(
1

mv
(k)
x

(F f,(k)
y + F r,(k)

y) + r(k)

)2

+

(
1

Iz
(L

(k)
f F f,(k)

y − L(k)
r F r,(k)

y)

)2

(4.10a)

s.t. ∀k ∈ {0, 1, ...N}

F r,(k)
z =

mgL
(k)
f − v

(k)
x β(k)r(k)hm

L
F f,(k)
z = mg − F r,(k)

z (4.10b)

L
(k)
f =

F
r(k)
z

F
f,(k)
z + F

z,(k)
R

L L(k)
r =

F
f,(k)
z

F
f,(k)
z + F

r,(k)
z

L (4.10c)

a
(k)
f = tan−1(β(k) +

r(k)L
(k)
f

v
(k)
x

)− δ(k) a(k)
r = tan−1(β(k) − r(k)Lr

v
(k)
x

) (4.10d)

F f,(k)
y = −µF f,(k)

z sin(C tan−1(Bα
(k)
f)) (4.10e)

F r,max,(k)
y =

√
(F

r,(k)
z)2 − (F

r,(k)
x)2 (4.10f)

F r,paj,(k)
y = −µF r,(k)

z sin(C tan−1(Bα(k)
r)) (4.10g)

F r,(k)
y = min(F r,max,(k)

y , F r,paj
y) (4.10h)

where k superscript refers to the k-th experiment from N experiments. The optimization
program (4.10) finds the optimal values of tire model parameters B,C, µ ∈ R and side-slip
angle values {β(k)}Nk=0. The optimization routine contains many nonlinear expressions in
the constraints that come from the system dynamics and tire models in (4.1) and in (4.4).
The objective function (4.10a) aims to equate both sides of the dynamic equations in the
system model (4.1) by minimizing the sum of residuals. Expressions (4.10b) - (4.10c) account
for the effects of weight transfer between the front and rear tires. These effects of weight
transfer are included to get a more accurate estimate of the tire model parameters. The
additional complexity to the system dynamics is acceptable since the optimization program
is run offline. Expressions in (4.10d) calculate the tire slip angle, and expressions (4.10e) -
(4.10h) calculate the lateral force in the front and rear tires.

As in the optimization program (4.9), the input to program (4.10) are vehicle parameters
and time series data from sensors and actuators (servo for steering). To generate data, the
RC runs with a fixed motor and steering angle command until the RC reaches steady state,
at which point the steady state longitudinal velocity vx, steering angle δ, and yaw rate r are
recorded. After several tests from a range of steering angles input δ and motor inputs FxR,
optimization program (4.10) is solved. We remark that the optimization program (4.10)
contain more expressions than other tire model identification procedures. This stems from
the limitation that an accurate estimate of the lateral velocity vy is difficult to obtain using
only the encoder and IMU measurements, both of which are noisy. Since the lateral velocity
is necessary for computing the tire slip angles, we estimate it indirectly by making β an
optimization variable that best fits that data.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 87

Figure 4.6: The optimized tire model parameters from program (4.10) fit the experimental
data. The red and black asterisks represent tire forces estimated directly from data using
the dynamic equations, and the dashed blue line comes from the tire model with optimized
parameters and slip-angle estimates from data

Optical flow

During drift, the measurement readings for the encoder are no longer reliable, due to slip
and we must use other sensor information to estimate velocity. For this project, we use
an on-board camera to estimate velocity using a technique called optical flow. Optical flow
calculates the motion between two image frames by computing spatial and temporal gradients
of the brightness, and then solving the following equation:

Ixvx + Iyvy + It = 0 (4.11)

where Ix, Iy are the partial derivatives of the image intensity with respect to position, It is
the partial derivative of the image intensity with respect to time, vx is the optical flow along
the x−direction, and vy is the optical flow along the y−direction. The image intensity is a
scalar number between 0 (black) and 255 (white) for images that are converted from color
to gray-scale. Equation (4.11) applies to each pixel and each time step, which results in a
longitudinal and lateral velocity value computed for each pixel.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 88

We remark that the lateral and longitudinal estimate directly coming for optical flow
first needed to be calibrated against a good longitudinal velocity estimate from the encoders.
Secondly, the optical flow algorithm computes intensity gradients, meaning the images need
to change from frame to frame, so the surround environment should be rich in features. We
found that a downward-facing camera installed at the rear of the car gave poor optical flow
results. After inspecting the sequence of input images while the RC drove along a straight
path along an indoor hallway, we discovered the images changed significantly between any
two consecutive frames, to the point where each frame had little to no pixel data preserved
from the previous frame (in other words, the image scene was entirely new for each frame), so
the gradient computations were inaccurate. Furthermore, the tiled-surface do not provide a
feature-rich scene with which the optical flow algorithm could compute gradients. In the end,
we mounted the camera directly above the CoG and pointed the camera upward, facing the
ceiling. We observed much more stable performance when running the experiment indoors
at low-speeds (less than 3 m/s). The estimated longitudinal and lateral velocity of the RC
CoG was taken as the average of the velocity estimates over the center group of image pixels.

More details of the optical flow algorithm can be found in [10]. For implementation, we
ran the optical flow algorithm using the Open Computer Vision (OpenCV) library.

State Estimation

For state estimation, we applied an Extended Kalman Filter (EKF) that uses the vehicle
model in (4.1), with the longitudinal dynamics in (4.7) and the tire model in (4.5). We model
process noise wk and measurement noise vk at time step k as Gaussian with zero mean and
covariance Qk and Rk , respectively, as shown below:

wk ∼ N (0,Wk) (4.12a)

vk ∼ N (0, Vk) (4.12b)

and then apply the following prediction and update equations to get a state estimate:

µt+1|0:t = Aµt|0:t +Bµt (4.13a)

Σt+1|0:t = AΣt|0:tA
> +Q (4.13b)

Kt+1 = Σt+1|0:tC
> (CΣt+1|0:tC

> +R
)−1

(4.13c)

µt+1|0:t+1 = µt+1|0:t +Kt+1

(
zt+1 − (Cµt+1|0:t + d)

)
(4.13d)

Σt+1|t+1 = (I −Kt+1C)Σt+1|0:t (4.13e)

where µt+1|0:t is the a priori state estimate, µt+1|0:t+1 is the a posteriori state estimate,
Σt+1|0:t is the a priori estimate covariance, and Σt+1|0:t+1 is the a posteriori estimate covari-
ance.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 89

Control Design

The objective of the controller is to stabilize the vehicle around an equilibrium drifting state
which we designate as the reference state z̄ = zeq. We design an LQR controller offline
according to the steps in Table 4.1 and then run it online according to Table 4.2.

Table 4.1: Offline procedure

1 Define the reference state z̄ = zeq

2 Linearize vehicle model about reference state

3 Compute LQR control policy

u = ū+ ∆u

∆u = −K∆z

4 Compute the input limits umin, umax using the friction circle

5 Find the region of attraction where LQR is stabilizing and does not violate input
limits (discussed in the next section)

The LQR method provides a state-feedback policy for our MIMO system to balance
the conflicting objectives of having a high yaw rate in one direction with a steering angle
in the other (i.e. counter-steer). In order to use LQR, the system dynamics (4.1) are

linearized with respect to the reference state z̄ = zeq =
[
βeq veq

x req
]>

and reference input

ū = ueq =
[
F f,eq
y F r,eq

x

]>
. The system dynamics are then transformed to reflect the error

dynamics.

∆ż = A∆z +B∆u (4.14)

where ∆z = z − z̄ and ∆u = u− ū
In the linearized system dynamics, the front lateral force and rear longitudinal force act

as inputs to the system since they enter the system dynamics in a predominantly linear way,
aside from the sin δ term in (4.1c), which is treated as a parameter. More importantly, using

Table 4.2: Online procedure

1 Use PI controller to bring vehicle to target velocity in reference state

2 Apply open-loop maneuver to drive vehicle into the LQR region of attraction

3 Initiate LQR controller and map inputs to low level actuator commands

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 90

the tire model, the front lateral force can be mapped to a steering angle δ, which is then
sent as an actuator command.

The analytical form of the entries for the system matrix A and the input matrix B are
given as follows

A =

∂β̇
∂β

∂β̇
∂r

∂β̇
∂vx

∂ṙ
∂β

∂ṙ
∂r

∂ṙ
∂vx

∂v̇x
∂β

∂v̇x
∂r

∂v̇x
∂vx

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (4.15a)

B =

∂β̇
∂FyF

∂β̇
∂FxR

∂ṙ
∂FyF

∂ṙ
∂FxR

∂v̇x
∂FyF

∂v̇x
∂FxR

 =

b11 b12

b21 b22

b31 b32

 (4.15b)

with the following analytical expressions for the non-zero elements of system matrix A:

a12 = −1 (4.16a)

a13 = −
F f
y + F r

y

mv2
x

(4.16b)

a31 =
∂v̇x
∂β

= − 1

m
F f
y

∂ sin δ

∂β
+ vxr

= −
F f
y cos δ

m

∂δ

∂αf

∂αf
∂β

+ vxr

=

(
−
F f
y cos δ

m

)
(−1)

(
1

1 + (β +
rLf
vx

)2

)
+ vxr

=
F f
y cos δ

m

v2
x

v2
x + (βvx + rLf)2

+ rvx (4.16c)

a31 =
F f
y cos δ

m

Lfvx
v2
x + (βvx + rLf)2

+ vxβ (4.16d)

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 91

and the following analytical expressions for the non-zero elements of control B:

b11 =
1

mvx
(4.17a)

b12 = − 1

mvx

∂F r
y

∂F r
x

= − 1

mvx

∂
√

(µF r
z)2 − (F r

x)2

∂F r
x

= − 1

mvx

FxR√
(µF r

z)2 − (F r
x)2

(4.17b)

b21 =
Lf
Iz

(4.17c)

b22 =
Lr
Iz

F r
x√

(µF r
z)2 − (F r

x)2

(4.17d)

b31 = −sin δ

m
(4.17e)

b32 =
1

m
(4.17f)

Note that for terms containing rear tire force components in the control matrix B, we
apply the constraint (µFz)

2 = F 2
x + F 2

y since the rear tire is saturated during drift.
The LQR controller is based on the system dynamics in (4.14) with the following quadratic

cost function:

J =

∫ ∞
t=0

(∆zTQ∆z + ∆uTR∆u)dt (4.18)

where Q = QT ≥ 0, R = RT ≥ 0 are positive definite matrices and u is the control input
that minimizes the cost function given by:

∆u = −R−1BTP∆z = −K∆z (4.19)

where P = P T > 0, which can be obtained by solving the Algebraic Riccati Equation:

A>P + PA− PBR−1B>P +Q = 0 (4.20)

The controller used here employs a feedforward-feedback structure, with F f
y and F r

x

acting as model inputs. These model inputs are then mapped to motor (for F r
x) commands

and servo (for δ) commands that control the vehicle using the tire model in (4.10) and the
longitudinal dynamics model in (4.9).

Since the LQR controller tries to maintain a state near the drift reference state, the front

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 92

wheels are often nearly or completely saturated. This means that the synthetic inputs F f
y , F

r
x

have a limited bandwidth to operate before saturating.
The LQR controller needs to stabilize the system about the desired operating point under

the constraint of tire saturation. As the rear tires operate under saturation conditions, we
still want the feedback control policy to satisfy the following constraint:

umin ≤ ū+ ∆u ≤ umax (4.21)

where umin and umax are set based on the fiction limit. In light of this constraint, we want
to compute a region of attraction under which the LQR feedback policy with stabilize the
RC about drift, such that if the vehicle state enters that region and the controller activates,
then the RC state will stay within the region and converge towards the target state.

Region of Attraction

In order to compute the region of attraction under input limits, we use Lyapunov’s second
method for stability. The method states that given a function V (x) : Rn → R, if the following
conditions hold true:

� V (x) = 0 if and only if x = 0

� V (x) > 0 if and only if x 6= 0

� V̇ (x) = d
dt
V (x) < 0 for all values x 6= 0

then the system is stable in the sense of Lyapunov. Using the P matrix from the solution of
the Ricatti equation, we can observe that the system is stable:

V (∆z) = ∆z>P∆z (4.22a)

V̇ (∆z) =
d

dt

(
z>P∆z

)
= ∆ż>P∆z + ∆z>P∆ż

= (A∆z +B∆u)>P∆z + ∆z>P (A∆z +B∆u)

= (A∆z −BR−1BTP∆z)>P∆z + ∆z>P (A∆z −BR−1BTP∆z)

= ∆z>(AP> + PA− 2PBR−1B>P)∆z (4.22b)

= −∆z>(Q+ PBR−1B>P)∆z (4.22c)

= −∆z>(Q+ PBR−1RR−1B>P)∆z (4.22d)

= −∆z>(Q+K>RK)∆z (4.22e)

This formulation, however, assumes the system inputs are unbounded, but in reality, the
vehicle actuators saturate due to physical limits from the friction circle and steering system.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 93

The state space region where the LQR is stabilizing and does not violate the input limits is
formulated by the following optimization program:

max
∆z,γ

γ (4.23a)

s.t. H∆z ≤ w ∀∆z ∈ {∆z ∈ Rn : ∆zP∆z ≤ γ} (4.23b)

where H =

[
−K
K

]
and w =

[
umax − ū
ū− umin

]
. The objective function in (4.23a) aims to

maximize the region of attraction and the constraint in (4.23b) enforces limits on the system
inputs. To simplify notation, we define the set S(γ) = {∆z ∈ Rn : ∆zP∆z ≤ γ}

We can rewrite optimization program (4.23) into the following equivalent program:

max
∆z,γ

γ (4.24a)

s.t. max
∆z∈S(γ)

hi∆z ≤ wi ∀i ∈ {1, 2, ..., 2m} (4.24b)

where we re-express H and w as H =
[
h>1 . . . h>2m

]>
and w =

[
w>1 . . . w>2m

]>
, with hi

and wi representing the i-th row of H and w, respectively. The variable m is the dimension of
the input vector u. Now we first focus on solving the optimization problem within constraint
(4.24b). We can recast it to the following formulation:

max
∆z

hi∆z (4.25a)

s.t. ∆z>P∆z ≤ γ (4.25b)

The formulations are nearly identical. We transformed constraint (4.23b) into (4.24b) by
casting an optimization problem inside the left-hand side of constraint (4.24b).

For optimization program (4.25), we treat the value γ as a parameter and solve the
program using the KKT conditions. First, we write the Lagrangian as:

L(∆z, µ) = hi∆z + µ(∆z>P∆z − γ) (4.26)

Now, we write the stationarity condition (4.27a) and complementary slackness condition

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 94

(4.27b) from the KKT conditions as below:

∇xL(∆z, µ) = h>i + 2µP∆z = 0 (4.27a)

∆z = − 1

2µ
P−1h>i

µ(∆z>P∆z − γ) = 0 (4.27b)

γ = ∆z>P∆z

Using the results from the KKT conditions, we can solve for the value of the Lagrangian
multiplier µ:

γ = ∆z>P∆z

=

(
− 1

2µ
P−1h>i

)>
P

(
− 1

2µ
P−1h>i

)
µ = ±

√
hiP−1h>i
2
√
γ

We now evaluate the value of the objective function (4.25a) by substituting the results
for ∆z and µ from above:

hi∆z = hi(−
1

2µ
P−1h>i)

hi∆z = ±√γ
√
hiPh>i

The optimization program (4.25) has two solutions, but we only take the positive one
since we are solving a maximization problem. Next, we can substitute this result inside the
constraint of (4.24) to arrive at the following program:

max
∆z,γ

γ (4.28a)

s.t.
√
γ
√
hiPh>i ≤ wi ∀i ∈ {1, 2, ..., 2m} (4.28b)

From (4.28), we can directly use the inequality constraint to solve for γ since the rest of

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 95

the terms in the constraint are given data quantities. We re-write the program as follows:

max
∆z,γ

γ (4.29a)

s.t. γ ≤ w2
i

hiPh>i
∀i ∈ {1, 2, ..., 2m} (4.29b)

Using constraint (4.29b), we can now write an explicit solution to the original program
in (4.23):

γ = min
i

w2
i

hiPh>i
(4.30)

The bound γ provides a conservative bound for the region of attraction. During online
control, the first conducts an open loop maneuver based on how expert drivers initiate drift.
The open-loop maneuver consists of driving the vehicle straight at the reference velocity,
then steering aggressively to the left (δ > 15 deg) and accelerating briefly, and then counter-
steering to the right. The open-loop maneuver is meant to bring the vehicle into the region
of action. To determine if the vehicle state has entered the region of attraction, we simply
check if the condition ∆zP∆z ≤ γ is true. Once the system has reached a state under which
the check condition is true, then the vehicle is inside the region of attraction and the closed
loop LQR policy is activated. We remark that the open-loop maneuver is not guaranteed to
bring the vehicle into the region of attraction, but based on experimental results, the system
in practice enters the RoA as long as the yaw rate after the open-loop maneuver is at or
above the reference yaw rate. The methods in this chapter on path planning can be used to
systematically find an open-loop maneuver to bring the vehicle into the RoA.

Experimental Platform

To test the proposed LQR feedback policy, we used the first generation BARC platform.
At the time of testing, we have not yet begun development of the second-generation BARC
platform.

The parameters of RC-car and tires are summarized in Table 4.3.

Table 4.3: RC-car parameters

Parameter Value Parameter Value
m [kg] 1.95 h [m] 0.05

Iz [kg · m2] 0.24 B 7.4
Lf [m] 0.125 C 1.25
Lr [m] 0.125 µ 0.234

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 96

Simulation Results

The controller was initially validated using CarSim, a high fidelity vehicle simulation soft-
ware. We used a hatchback vehicle as the plant since the software suite did not provide any
models at the scale of an RC-car. The parameters of the vehicle and tires while station-
ary are summarized in Table 4.4. For simulation, we set the reference state at β = −0.32
rad,r = 0.36 rad/s, and vx = 25 m/s, with an initial state of of βeq = 0 rad,req = 0 rad/s,
and veqx = 25m/s. We also designed a short open-loop maneuver to bring the vehicle in a
region of the state space that would active the closed loop LQR controller. Once in the LQR
region of attraction, the controller stabilizes the vehicle around that reference state.

Table 4.4: CarSim vehicle parameters

Parameter Value Parameter Value
m [kg] 1830 h [m] 0.59

Iz [kg · m2] 3287 B 12.6
Lf [m] 1.4 C 1.41
Lr [m] 1.65 µ 1.00

The vehicle states and control inputs during simulation are shown in Figure (4.7) and
Figure (4.8). The blue lines in Figure (4.7) show the simulation measurements and the red
lines show the control reference. For t < 2s, the open-loop maneuver is active, and at t = 2s,
the closed loop controller is activated. As Figure (4.7) shows, the state of the vehicle con-

verges to a steady-state condition, and reaches the reference state of z̄ =
[
−0.48, 0.39, 26

]>
around t = 10s. From the simulation results, we observe an interplay between the yaw rate
and side slip angle dynamics, namely that in order for the magnitude of the side slip angle to
increase, the magnitude of the yaw rate needs to decrease. Decreasing the rear lateral force
decreases the yaw rate, but also decreases the longitudinal velocity. The LQR controller
rapidly manipulates the steering angle and longitudinal force to satisfy these competing
objectives. We observe this from time t = 3.5s onward.

Experimental Results

As in simulation, we applied an open loop control input and a closed loop controller for
the RC vehicle. The vehicle states and control inputs are shown in Figure (4.9) and Figure

(4.10), respectively, with an initial vehicle state around z =
[
0, 0, 2.7

]>
, and the desired

reference state at z̄ =
[
−0.36, 1.62, 1.2

]>
. Again, the blue lines denote the measured values

and the red lines denote the control reference.
For the open loop maneuver, the RC-car accelerates to the target longitudinal speed

and then turns to the left. Shortly after turning, the LQR controller is activated, and the
RC counter-steers (positive to negative steering angle), but the yaw rate still maintains a

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 97

Figure 4.7: The CarSim vehicle state converges to the reference state.

Figure 4.8: The CarSim vehicle input converges to the reference input.

high positive value, meaning that while the steering wheel is pointing in one direction, the
vehicle is actually rotating in the other direction. At the same time, the rear wheel torque
notably increases. The peak value in side slip plot at 9s is due to the sudden jump in the

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 98

lateral velocity measurement. A video of the experiment can be found at http://www.barc-
project.com/projects/.

Figure 4.9: The RC state oscillates about the reference state.

Figure 4.10: The RC state oscillates about the reference input.

http://www.barc-project.com/projects/
http://www.barc-project.com/projects/

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 99

The experimental results for drift parking overall maintained drift for about one-lap, but
then fell out of drift. Aside from model mismatch, one difficult challenge to sustained steady
drift was state estimation using only onboard sensors with only onboard computational re-
sources from the Odroid. The optical flow algorithm provided noisy estimates of the velocity,
and would often return completely invalid measurements or simply not return any measure-
ment. The IMU and encoder gave noisy measurements. We attempted other estimation
approaches like simultaneous localization and mapping (SLAM) to provide pose estimates
that could be fed into the Extended Kalman Filter, but the Odroid did not have enough
computational resources in the GPU to process the image data from the SLAM algorithms
quickly. On the Odroid, the SLAM algorithm would run at 3 Hz.

4.2 Path Planning and Mixed Open-loop Closed-loop

Control

Path planning and control represent two critical modules for autonomous vehicles. The
path planning unit finds a sequence of states and inputs to bring the vehicle system from
an initial state to final state by breaking down the movement task into discrete motions.
The control unit then tracks the reference trajectory returned from the path planner on the
actual system.

Path planning has a long history of research and study, and has been a popular topic in
recent years with the rise of autonomous vehicles. At a high level, three popular strategies
are commonly employed to generate paths: sample based, grid based, and optimization based
methods.

Sample-based methods like Rapidly Exploring Random Tree (RRT) work on the principle
of starting from an initial state, sampling an state or input, propagating the system forward,
and then repeating until the goal state is reached. The various implementations of those
steps give rise to different algorithms, but the core idea is to draw samples and apply them
to the system until a path from the start to the end state is found. Sample-based algorithms
work well on high dimensional spaces.

Grid-based methods put a discretized grid over the state space and then search for a
sequence of actions through the gridded nodes to connect the start and end nodes. Nodes
are data structures that incorporate state information as well as linkage information for the
algorithm (i.e. which previous node and what action led to this node). Algorithms like
depth-first search, breath-first search, A start (A*) explore the space one node at a time
starting from an initial node. The search algorithm uses a stack or heap data structure to
keep track of explored nodes and a basic criteria (breath-first or depth-first) to select which
state to expand next. Algorithms like A* exploit domain knowledge of the space and use
a heuristic function to decide which node to expand. Grid-based algorithms work well on
low-order spaces, but suffer from the curse of dimensionality as the space dimension grows.

Optimization-based methods work by casting the path-planning problem into a finite

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 100

time optimal control problem. The objective function usually penalizes input energy or
input changes over consecutive time steps, and the constraints enforce system dynamics
and enforce desired start and end states. As with search-based method, optimization-based
methods work well on low-order systems. Optimization solvers can exploit mathematical
properties like linearity or convexity to reduce solve times and guarantee optimal solutions,
but in practice, most physical system exhibit nonlinear properties. Nonlinear solvers return
locally optimal solutions with quality that often depend on the initial conditions.

For path planning of high slip maneuvers like drift, grid-based and optimization-based
techniques stumble because of the high-order system dynamics needed to adequately describe
the motion of the vehicle. We propose a new simple, sample-based technique based on the
observation that drift maneuvers can be described effectively as combinations of step input
commands. Instead of sampling inputs commands, we sample parameters that characterize
the command signals for drift maneuvers. For example, by observing an expert driver con-
ducting a drift parking maneuver, we notice that he executes three precisely timed, yet basic
actions: apply handbrake, turn steering wheel, and apply brake pedal. As shown in Figure
4.11, the command signals are parameterized by signal parameters.

t1

t2

t3

δ1

F1 F2

pedal brake command

handbrake command

steering angle command

Figure 4.11: The control commands for aggressive maneuvers like drift roughly take the form
of step functions that can easily by parameterized.

With those command signals, we can simulate the system forward for the duration of the
command signal, and then test if the system landed in the desired set of terminal states. We
explore this idea in more detail later when we discuss path planning for drift parking and
drift cornering, but the main idea is simple - represent the control action as a step input
command, and sample the parameters (magnitude and duration) that characterize it.

We now discuss control for tracking the reference commands and states from the path
planner. The premise of the control design in this chapter is that given a fixed environment,
vehicle systems operating in open-loop over short time scales behave deterministically, even
if the dynamics are complex. This proposition means that when we initiate a drift maneuver

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 101

at approximately the same initial state and operate briefly in open-loop (i.e. using a fixed
sequence of input commands), then the system will have a predictable, repeatable response.

We now move to the design of a mixed open-loop closed-loop control scheme for switching
between the two modes of operation. We formulate an optimization program that takes in a
reference trajectory z̄t

N
t=0 from the path planner, and experimental data from an open-loop

maneuver ({zdata
k }Nt=L, {udata

k }Nt=L), where L is the time-step the maneuver begins, and write
the program as follows:

min
z,u,zCL,uCL,zOL,uOL,m

N∑
k=0

(zk − z̄k) (4.31a)

s.t. (4.31b)

zk+1 = f(zk, uk) ∀k ∈ {0, 1, ...L} (4.31c)

zk+1 = zCLk+1m+ zOLk+1(1−m) ∀k ∈ {L,L+ 1, ...N − 1} (4.31d)

uk+1 = uCLk+1m+ uOLk+1(1−m) ∀k ∈ {L,L+ 1, ...N − 1} (4.31e)

zCLk+1 = f(zk, uk) ∀k ∈ {L,L+ 1, ...N − 1} (4.31f)

zOLk = zdata
k ∀k ∈ {L,L+ 1, ...N − 1} (4.31g)

uOLk = udata
k ∀k ∈ {L,L+ 1, ...N − 1} (4.31h)

||zk − zOLk || ≤ mM ∀k ∈ {L,L+ 1, ...N − 1} (4.31i)

m ∈ {0, 1} (4.31j)

z0 = z(0) (4.31k)

where z, zOL, zCL ∈ Rn and u, uOL, uCL ∈ Rm are the optimal state and input, and n
and m are the dimension of the state and input, and m is a binary variable. The bold face
notation z indicates a set of optimization variables z̄k

N
k=0.

The optimization program in (4.31) represents an optimal way of deciding if the system
should operate in closed-loop or in open-loop. The objective function in (4.31a) follows a
tracking formulation, where deviations from the desired reference trajectory are penalized.
For the initial part of the maneuver, constraint (4.31c) forces the system to evolve accord-
ing to a dynamics model f that sufficiently well describes the motion of the vehicle. At
the moment the open-loop maneuver could start, we decompose the optimal state and in-
put variable into zCL, uCL and zOL, uOL, in constraints (4.31d) - (4.31e), which represent
closed loop and open-loop operation. The binary variable m takes forces from the main
optimal state variable z to evolve according to either the open-loop dynamics or the closed-
loop dynamics. The model for the open-loop dynamics comes from the experimental data
({zdata

k }Nt=L, {udata
k }Nt=L), which is given in constraints (4.31g)-(4.31h). From our proposition,

we argue this open-loop model is valid because the vehicle system behaves deterministically
over short time scales. Constraint (4.31i) ensures that the system would operate in open-loop

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 102

for the duration of the maneuver. Constraint (4.31i) also ensures that the transition from
closed-loop to open-loop are connected by the same state at time-step k = L. After solving
the program, if the program return m = 1, the system operates in closed-loop, otherwise the
system operates in open-loop.

We remark that optimization program (4.31) represents a simple, theoretical formulation
for deciding between when to operate in closed-loop and open-loop. In the following sections
on drift parking and drift cornering, we discuss control designs that are based on the ideas
in this formulation.

4.3 Autonomous Drift Parking

The previous section focused on steady drift, which is just tracking a reference state. In the
remaining sections, we focus on drift maneuvers that require planning. In this section, we
focus on the design of a control scheme to park a vehicle with a sliding maneuver.

Drift parking represents an extreme maneuver that is beyond the skilled set of the average
driver, requiring adept use and timing of the handbrake, pedal brake and steering wheel.
The maneuver causes the vehicle to rotate rapidly and slide, nearly sideways (i.e. high side
slip angle) into a desired parking spot.

The control scheme consists of an initial closed-loop segment, followed by an open-loop
segment, which in combination closely track a reference drift-parking trajectory. The method
is validated using the BARC platform.

Background

During motor sport events, many of the worlds best drivers deliberately operate their vehicle
with saturated tires in order to perform a quick turn or a slide. Controlling drift maneuvers
requires precise timing and coordination of multiple inputs. We observe from demonstra-
tion that for short-duration maneuvers like drift parking, however, the input commands are
simple step-input combinations of input commands. While the dynamics of a transient drift
maneuver are difficult to model accurately (and thus control using model-based techniques),
the expert driver executes a basic sequence of control actions (turn wheel, apply handbrake,
apply pedal brake). This observation motivates the design of a mixed closed-loop and open-
loop architecture. When the vehicle dynamics are well modeled, the controller operates
under a closed-loop algorithm, when not, the controller applies an open-loop sequence of
commands. Such approaches are found through the literature [1], [16], [23].

Kolter and coauthors [23] worked on a similar project for drift parking. They designed a
mixed open-loop closed-loop strategy using a probabilistic method called multi-model LQR
based on a demonstration of the desired maneuver. In contrast, we designed a deterministic
algorithm for mixed open and closed loop control that generalizes to other types of extreme
maneuvers.

The following sections discuss the vehicle model, path planning, control design and state

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 103

estimation.

Vehicle model

We adopt two separate vehicle models to capture the system dynamics, a kinematic model
and a kinetic model. The kinematic model forms the basis of the nonlinear MPC tracking
control for the first part of the drift-parking maneuver, and the kinetic model forms the basis
of the nonlinear observer for the entire experiment.

The state and input vectors for the kinematic model are z =
[
x y ψ v

]>
and u =[

δ a
]
, respectively. The equations of motion are given as follows:

ẋ = v cosψ (4.32a)

ẏ = v sinψ (4.32b)

ψ̇ =
v

L
tan δ (4.32c)

v̇ = a (4.32d)

The state and input vectors for the dynamic bicycle model are z =
[
β r vx

]>
and

u =
[
δ F r

x

]>
, respectively. The equations of motion are given as follows:

β̇ =
1

mvx
(F f

y + F r
y)− r (4.33a)

ṙ =
1

Iz
(LfF

f
y − LrF r

y) (4.33b)

v̇x =
1

m
(F r

x − F f
y sin δ) + vxrβ (4.33c)

As with the steady-state drift project, we also apply the Pacejka model to estimate the
lateral force at high tire slip angles. For more details on the dynamic model, refer to section
(4.1).

Control Design

Nearly all advanced driving maneuvers have some high side slip element, which manifests as
sliding or drifting. Such maneuvers are beyond the skill set for the average driver, and there-
fore represent an interesting problem for control engineers. These high side slips maneuvers
are difficult to control for two reasons: poor model fidelity (in highly nonlinear regimes) and
actuator saturation. Additionally, the driver has three inputs at his disposal which he needs
to coordinate: the steering angle, δ, the handbrake, Fh-brank, and the pedal brake, Fp-brake.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 104

In the control architecture described later, we employ a mixed open-loop and closed-loop
control approach. The controller operates in closed-loop during the initial tracking segment,
under well-modeled conditions with a low side-slip angle, and then operates in open-loop for
the actual drift maneuver. To illustrate this, we show an example parallel parking trajectory
in Figure (4.12). The part of the trajectory encircled in green consists mainly of straight
driving and slight turning, which is well-modeled. The part encircled in red involves is the
high side-slip sliding motion, which is difficult to model accurately.

Figure 4.12: The vehicle has a low side-slip angle in the highlighted green segment and a
high-slip angle in the red segment.

Path Planning

The objective of the path planner is to generate an input sequence that results in the vehicle
sliding into the parking spot without any collisions (i.e. the vehicle remains within boundaries
of the parking spot at all times). On a typical full-scale vehicle, the input signals are
steering angle, throttle, hand brake and pedal brake. The handbrake acts only on the rear
wheels, while the pedal brake acts on both the front and rear wheels [3]. For the 1/10-scale
RC car used for experimentation, we use steering angle and longitudinal force as inputs,

u =
[
δ F r

x

]>
. The RC has a single motor that functions as both an accelerator and a brake.

For the path planner, each input signal takes the form of a step function (or sum of multi-
ple step functions) that is parameterized by two parameters: step time and magnitude. The
rule-based path planner samples these parameters from a uniform distribution unif(a, b),
where a and b represent the lower and upper bounds of the sample space. The limits of the
sample domain a, b are based on observing expert driver conducting extreme maneuvers.

During a drift parking maneuver, the driver executes a sequence of precisely timed actions.
He first swerves the vehicle with the steering wheel, next pulls the handbrake (causing the

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 105

vehicle’s wheels to lock), and then applies the pedal brake. Based on this sequence of
maneuvers (i.e. first steer, next use handbrake, then pedal brake), the authors select an
appropriate range (a, b) for each parameter. This allows the path planner to sample from a
smaller range and more quickly find a successful input sequence.
Each input signal is of the form below:

δ(t) =

{
0 : t ≤ t1
δ1 : t1 < t

(4.34)

Fh-brake(t) =

{
0 : t ≤ t2
Fhb : t2 < t

(4.35)

Fp-brake(t) =

{
0 : t ≤ t3
Fpb : t3 < t

(4.36)

t

Input u

where t1 ≤ t2 ≤ t3.
After specifying the sampling space for each input signal, the following algorithm is used

to search for a successful trajectory:

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 106

Algorithm 1 Path planner for drift parking

1: Define obstacles
2: Define initial state z0

3: Define upper iteration limit M
4: while i ≤M do
5: {ut}Tt=0 ← unif(a, b)
6: {zt}Tt=0 ← f(z0, U)
7: if collisionFree({zt}Tt=0) then
8: {ūt}Tt=0 ← {ut}Tt=0

9: {z̄t}Tt=0 ← {zt}Tt=0

10: return ({z̄t}Tt=0, {ūt}Tt=0)
11: end if
12: i← i+ 1
13: end while

In Algorithm 1, the input sequence {ut}Tt=0 is generated from parameters that are sam-
pled from the uniform distribution unif(a, b). The initial state z0 and input sequence {ut}Tt=0

are then fed into the vehicle model to generate the vehicle’s trajectory. Lastly, the function
collisionFree checks if the vehicle remains within the parking spot boundaries. If success-
ful, then the algorithm returns the reference state trajectory {z̄i}Tt=0 and reference input
trajectory {ūi}Tt=0, otherwise it continues to sample and generate other candidate step func-
tions. The vehicle model f from line 6 comes from CarSim, a high fidelity vehicle dynamics
software. For the experiments, the vehicle’s trajectory was obtained from a demonstration.
This corresponds to the Algorithm (1) terminating in one iteration since the demonstration
trajectory is collision free. Note, the reference trajectory is discrete, since these states and
inputs are time stamped values that we record during the simulation or experiment.

Algorithm 1 takes on a simple structure and produces a successful trajectory because we
sample from a narrow input space, which is informed from observations (i.e. the bounds of
the sample space are based on expert demonstration). Demonstration data also informs the
initial state from which we initiate the sampled drift parking maneuver.

Path Following and Switched Control

The controller tracks a drift parking trajectory by switching between a nonlinear MPC
program and a linear feedforward-feedback control policy. The controller determines auto-
matically when to switch based on the feasibility of the MPC optimization routine. At each
time step, the controller first localizes itself to the nearest point on the reference trajectory,
and then attempts to solve an MPC optimization routine to track the reference trajectory
in the specified time horizon.

The controller first locates the nearest point on the reference trajectory {zi}Tt=0 from the
current state estimate ẑt according to the optimization program in equation (4.37):

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 107

Dt = min
i
‖zi − ẑt‖2 (4.37)

We use the index i to construct a target tracking trajectory {z̄i}Ni=0, {ūi}Ni=0 for the MPC at
each time step, where N is the horizon length. The target tracking trajectory is a subset of
the reference trajectory.

The MPC routine attempts to track the target trajectory by solving the following opti-
mization problem at each time step t:

min
{zk}Nk=0,{uk}

N−1
k=0

N−1∑
k=0

(‖zk − z̄k‖2
Q + ‖uk − ūk‖2

R) +
N−1∑
k=1

‖∆uk‖2
R∆

+ ‖zN − z̄N‖2
P (4.38a)

s.t

zk+1 = f(zk, uk) ∀k ∈ {0..., N − 1} (4.38b)

∆zk = T−1
s (zk − zk−1), ∆zk ∈ ∆Z ∀k ∈ {1..., N} (4.38c)

∆uk = T−1
s (uk − uk−1), ∆uk ∈ ∆U ∀k ∈ {1..., N − 1} (4.38d)

‖(e1 + e2)> (zk − z̄k)‖ ≤ Dt ∀k ∈ {0..., N} (4.38e)

‖e>3 (zk − z̄k)‖2
2 ≤ ε ∀k ∈ {0..., N} (4.38f)

zk ∈ Z ∀k ∈ {0..., N} (4.38g)

uk ∈ U ∀k ∈ {0..., N − 1} (4.38h)

z0 = ẑt (4.38i)

In MPC program (4.38), {zk}Nk=0 and {uk}N−1
k=0 represent the optimized state and input

variables, and {z̄k}Nk=0 and {ūk}Nk=0 denote the target state and input vectors, with k indexing
the time step. For the objective function, Q,P ∈ Sn×n++ represents the state penalty and
terminal state penalty matrix, respectively. R,R∆ ∈ Sm×m++ represents the input penalty
and input difference penalty matrix respectively. Sn×n++ denotes the set of positive definite
symmetric matrices of size n by n, where n is the dimension of the state vector and m is the
dimension of the input vector. The norm operator is defined as ‖z‖2

Q = z>Qz.
The objective function (4.38a) follows a standard tracking MPC formulation, in which

deviations from the reference state and reference input trajectories are penalized. The term
∆u>k R∆∆uk penalizes large changes in the input over consecutive time steps, which produces
a smooth input path. The matrices Q,R,R∆, P are all user-defined penalty matrices that
trade off weights between the multiple objectives expressed in the objective function.

Constraint (4.38b) imposes system dynamics, which are the kinematic equation given
from (4.32a) - (4.32d)), and the initial condition constraint is given in (4.38i). Constraints
(4.38c) and (4.38d) limit state and input changes over consecutive time steps, where Ts
denotes sampling time in the system. Constraint (4.38g) and (4.38h) limit the state and
input magnitude.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 108

Constraint (4.38e) places a hard limit on the maximum position deviation from the
trajectory, where ei is the unit vector along the i-th axis and Dt is the last estimated
deviation from the trajectory. Constraint (4.38f) places hard limits on the deviation of the
heading angle.

The MPC controller tracks the trajectory closely when the dynamics are well modeled,
notably during the initial phase of the maneuver, which brings the vehicle to the target speed
and orientation from which to initiate drift. Once the controller attempts to track the actual
aggressive segment of the drift maneuver with large steering and brakes, the vehicle begins
to slide and the model becomes unreliable. The MPC program will become infeasible, and
will fail to find a solution that can track the trajectory. This behavior is expected since we
only supply a kinematic model and enforce strict constraints to follow the state trajectory
of a high side-slip maneuver. When the controller returns an infeasible solution status,
the control system switches to a feedforward-feedback control policy with a linear gain K.
The feedforward term, however, dominates the behavior of the control policy. The overall
switched control architecture is given by Algorithm 2.

Algorithm 2 Switched control algorithm
1: Inputs

2: {zi}Tt=0 {ui}Tt=0 ẑt

3: while while t < tf do
4: y ← measurement
5: ẑt ← ekf(ẑt−1, yt, ut−1)
6: Dt ← mink ‖zk − ẑt‖2

7: k ← minargk‖zk − ẑt‖2

8: {z̄i}Ni=0 ← {zi}k+N
i=k

9: {ūi}N−1
i=0 ← {ui}k+N−1

i=k

10: [status, UMPC]← solveMPC({z̄i}Ni=0, {ūi}N−1
i=0 , ẑt, Dt),

11: if status = feasible then
12: ut ← uMPC

0

13: else
14: ut ← ū0 +KP (ẑt − z̄0)
15: end if
16: end while

Control algorithm (2) is structured to track the drift park maneuver. At each time step,
the algorithm gets a new measurement y and estimates its state using an extended Kalman
filter (EKF), next it localizes itself with respect to the reference trajectory {zi}Tt=0, then
extracts N + 1 reference states and inputs to form the target trajectory {z̄i}Ni=0, {ūi}N−1

i=0 for
the MPC. Lastly, the controller attempts to solve the MPC, and when it fails, it switches to
a linear feedforward-feedback control policy using only the input reference information.

During the drift slide, the control of the rear wheels operate in open-loop. The controller
sends a locking command to the wheels, which causes sliding due to the angular momentum

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 109

already generated from the initial aggressive turn. The steering wheel operates primarily in
open-loop during the drift, but receives feedback from the yaw angle ψ measurement coming
from the IMU. We use a proportional controller with a constant gain matrix Kp ∈ Rp×n,
where p is the number of control inputs and n is the dimension of the state vector. The
matrix Kp is almost entirely zero, except for one diagonal entry k∆ψ, which multiplies the
yaw angle error.

The value of k∆ψ improves tracking, but the feedforward term ūt dominates the control
signal. For a simple proportional controller, setting k∆ψ too large would result in oscillatory
motion about the target trajectory.

Experimental Results

The BARC platform was used to test the algorithm. As with the steady-state drifting
experiment, an EKF with a dynamic bicycle model was designed to localize the vehicle.
Accuracy was limited since only on-board sensors (IMU and encoders) were available at the
time of the experiment. Localization is not an issue when the vehicle initiates the drift
maneuver when swerving the steering wheel since the rest of the input commands all operate
in open loop.

All experiments were conducted in an empty indoor room with the reference trajectory
obtained from a demonstration. The tracking performance with and without the proposed
architecture is shown in the Figure 4.13 and Figure 4.14. Using just a pre-recorded open
loop sequence of commands, the vehicle not only fails to track the reference trajectory, but
follows different paths with each trial, even under static environmental conditions. Also, a
strong bias in the steering system can be observed from figure 4.14. The proposed algorithm
had an average tracking error of around 0.24 m RMS, while the pure open loop one has
an average error of around 1.5 m RMS. Since measurements for position could only be
estimated using onboard sensor and an EKF algorithm, the plotted trajectories deviate from
the ground truth, but the final position was estimated by manually measuring the position
of the vehicle with measuring tape. The target parking spot was narrow and fixed between
static cardboard boxes

We tested both accuracy and repeatability of our algorithm by trying to track the same
trajectory multiple times. Experimental results show that the proposed algorithm is ap-
plicable in practice with using only low-cost on-board sensors. Video of the maneuver can
be found in http://www.barc-project.com/projects/ and the frame-by-frame breakdown is
shown in Figure 4.15.

http://www.barc-project.com/projects/

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 110

Figure 4.13: The switched controller tracks the reference trajectory closely. The blue tra-
jectory denotes the reference trajectory. All other trajectories which track the reference
trajectory are denoted in red and green, which indicate when the control operates under
MPC and when it operates under the feedforward (FF) - feedback (FB) control policy.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 111

Figure 4.14: Applying a pure open-loop controller over a long time horizon fails to track
the reference trajectory. The blue trajectory denotes the reference trajectory and the red
trajectories are all experimental results from applying the same control inputs as the reference
trajectory in open-loop.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 112

Figure 4.15: The frame-by-frame image shows the vehicles approaching, turning, and then
sliding into the parking spot between the boards during an experimental run.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 113

4.4 Autonomous Drift Cornering

In the previous section, we explored planning and control for autonomous parking. We now
explore another extreme autonomous maneuver, drift cornering. Drift cornering occurs when
a driver turns a corner very quickly and loses traction with the ground surface, causing the
vehicle to drift. As with other drifting maneuvers, expert drivers in rally races engage in
drift cornering often to minimize lap time.

In this section, we extend the planning and control strategy for autonomous drift cor-
nering. The planning algorithm for drift parking applies for drift cornering. The control
strategy also utilizes a switched open-loop (OL) closed-loop(CL) structure to track the cor-
nering trajectory, but instead evaluates the cost of OL and CL policies to determine when
to switch.

Background

Drift cornering has emerged as a research topic in the past decade for vehicle applications.
Velenis and others investigated optimal drift maneuvers in simulation to minimize the time
need to round a turn and exit with a maximum corner velocity [43] [44]. Kolter and others
applied a mixed open-loop and closed-loop maneuver using a probabilistic method called
multi-model LQR to repeatedly slide into a parking spot with a full scale vehicle [23]. Tav-
ernini and others utilized nonlinear optimal control theory to investigate the optimality of
the handbrake cornering technique for a front wheel drive vehicle [40].

The work in the following sections builds on the planning and control strategy in drift
parking and applies it now to drift cornering, with modifications in the controller.

Vehicle Model

We capture the vehicle dynamics using a six-state bicycle model with linear front and rear

wheel tire forces. The state and input vector are z =
[
vx vy r x y ψ

]>
and u =

[
δ F r

x

]
,

respectively.
The single track bicycle model is very similar as the one used in the steady state drift and

drift parking projects. The primary difference lies in the equation of the lateral dynamics.
For drift cornering, position is important, so the state vector includes longitudinal and lateral
velocity, which can be integrated and rotated to give position in the global coordinate frame.
For the steady state drift project, the controller only needs to track the target slip angle,
yaw rate and longitudinal velocity, the actual position of the vehicle is not important. The

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 114

following dynamic bicycle model is used in the control design of corner drift maneuver:

v̇x =
1

m
F r
x (4.39a)

v̇y =
1

m
(F f

y + F r
y)− vxr (4.39b)

ṙ =
1

Iz
(LfF

f
y − LrF r

y) (4.39c)

Ẋ = vx cosψ − vy sinψ (4.39d)

Ẏ = vx sinψ + vy cosψ (4.39e)

ψ̇ = r (4.39f)

where F f
y and F r

y are the lateral forces on the front wheel and real wheel. The parameters
m and Iz are the mass and moment of inertia about e3 axis. Lf and Lr represent the distance
from the front and rear axles to the CoG.

For the tires, we use a linear model to estimate the lateral force rather than a nonlinear
Pacejka model as in the previous two projects. Parameters in linear tire models are easier
to estimate and work well when the tire is not saturated. Additionally, for the drifting
maneuver, the controller will heavily operate in open-loop (model-free). We use the following
equations to estimate the lateral forces on each wheel:

F f
y = −Cfαf (4.40a)

F r
y = −Crαr (4.40b)

where Ci is the cornering stiffness of front or rear wheel and αi is the side slip angle of
the wheel, for i = {f, r}, expressed as:

αf =
vy + rLf

vx
− δ (4.41)

αr =
vy − rLr

vx
. (4.42)

In state space form, the dynamic equations are completely expressed as shown below:

ż = f(z, u) (4.43)

Path Planning

As with steady state drift and drift parking, drift cornering is characterized by large side
slip angles, counter-steering and tire force saturation. For path planning of transient drift

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 115

maneuvers, we adopt the same strategy as for parking drift maneuvers - we observe expert
drivers and characterize their control inputs as simple combinations of step-input commands,
then parameterize the input profiles and sample.

During a drift cornering process, the driver executes a sequence of simple, but carefully
timed actions. The driver initially drives straight before the track corner, then he turns
the corner and applies a large rear-drive torque. At this point, the vehicle begins to slide,
and the driver then both counter-steers and decreases the rear-drive torque. Without this
counter steer, the vehicle would spin out. As the driver exits the corner, the vehicle recovers
to a stable condition, with a small side slip and non-saturated tires. The general sequence
of drift cornering inputs is illustrated in Figure 4.16.

Rear Force

Steering angle

δturn

tturn

Fturn

tcounter

δcounter Fcounter

Figure 4.16: Parametrized control sequence for drift cornering

The generated input sequences for the input steering angle δ and the input rear force
FxR are parametrized by the following parameters:

tturn − duration of initial turn and throttle

δturn − steering angle of the turn in phase

Fturn −magnitude of rear force during initial turn

tcounter − duration of the counter steering

δcounter − steering angle of the counter steer

Fcounter −magnitude rear force during counter steering

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 116

Table 4.5: Rule-based path planning algorithm

1 Define the initial vehicle state and track boundary

2 Sample each parameter from a uniform distribution

3 Conduct experiments using inputs based on the sampled parameter set

4 Check if the resulting trajectory is drifting inside the corner. If unsuccessful, return
to step 2.

δ(t) =

0 : t ≤ t1
δturn : t1 < t ≤ t1 + tturn

δcounter : t1 + tturn < t < t1 + tturn + tcounter

(4.44)

FxR(t) =

Fnominal : t ≤ t1
Fturn : t1 < t ≤ t1 + tturn

Fcounter : t1 + tturn < t < t1 + tturn + tcounter

(4.45)

Table (4.5) outlines the steps of the rule-based path planning algorithm. The planner
uniformly samples each parameter to generate an input sequence for drift cornering. The
sampling domain for each parameter is based on general observations from expert drivers,
noting features like steering angles and duration. These observations guide the boundaries
of the sampling domain to become narrow, which reduces the time to sample a sequence of
parameters that produce an input sequence that results in drift cornering.

During a simulation or experiment in which the vehicle drifts the corner successfully,
we set the recorded states and inputs as the reference trajectory. This reference trajectory
{z̄i}Tt=0, {ūi}Tt=0 then guides the design of the mixed open-loop closed-loop control strategy.

We remark that one additional user-defined parameter in the path planning process is the
initial longitudinal velocity of the vehicle vx. The rule-based algorithm assumes the vehicle
is starting from a start with a positive longitudinal velocity and zero lateral velocity and
zero yaw rate. The force quantity Fnominal acts on the vehicle before the drift maneuver to
maintain a user-define target velocity. The first step in Algorithm (4.5) requires the user
to define the initial longitudinal velocity (only non-zero component of initial state), and a
boundary box (in terms of X and Y coordinates) from which to initiate the sampled drift
maneuver.

Control law

The mixed open-loop closed-loop controller stabilizes the vehicle around a reference drift
corner trajectory. Model-based controllers using conventional bicycle models with Pacejka

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 117

Table 4.6: Offline segment

1 Define the reference trajectory {z̄i}Tt=0, {ūi}Tt=0 from output of path planner

2 Linearize vehicle model along the designed reference trajectory

3 Define the feedforward-feedback control policy

∆ui = −Ki∆zi

ut = ūi + ∆ui

4 Compute errors between predicted and reference states

ei = ˆ̂zi − z̄i

Table 4.7: Online segment

1 Find the nearest point in the designed trajectory

2 Propagate vehicle dynamics forward in time for both closed-loop and open-loop policies

3 Compare cost functions of predicted closed-loop and predicted open-loop trajectories

4 Select the control policy command with less cost

tire models do not track a drift corner trajectories well because complex transient dynamics
during the maneuver. During a short period of time, however, a fixed open-loop input se-
quence launched from the same initial state (under static environmental conditions) produces
a repeatable response ([23]), even for systems undergoing complex dynamic processes like
drift cornering. We exploit the deterministic behavior of complex dynamics under a short
duration and design a mixed open-loop closed-loop controller that is designed to switch
between closed-loop and open-loop operation.

As with the drift parking controller, this mixed control strategy computes an optimal
control policy offline using LQR (rather than online using MPC), but has a different mecha-
nism for when deciding to operate in open-loop. The previous formulation based the switch
on feasibility conditions from the MPC solver output, but in this formulation, we based the
switch on values from the cost function.

At a high level, the mixed OL-CL control design is broken down into two parts, an offline
segment and online segment. The offline segment in Table (4.6) computes optimal feedback
policies, and the online segment in Table (4.6) determines whether to operate in closed-loop
(using the pre-computed feedback policy) or in open-loop. Details are discussed next.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 118

Offline segment

The offline segment focuses designing the optimal feedback (i.e. CL) control policies that
the mixed controller uses when running online. We use LQR to design a sequence of control
policies by first linearizing the vehicle model in (4.39) about the state and input to get the
matrices A = df/dz and B = df/du. The analytical expressions of the non-zero entries of the
system matrix Aij are given below, where i and j refer to the row and column, respectively.

a21 =
Cf + Cr
mv2

x

vy −
LrCr − LfCf

mv2
x

r − r (4.46a)

a22 = −Cf + Cr
mvx

(4.46b)

a23 =
LrCr − LfCf

mvx
− vx (4.46c)

a31 = −LrCr − LfCf
Izv2

x

vy +
L2
fCf + L2

rCr

Izv2
x

r (4.46d)

a32 =
LrCr − LfCf

Izvx
(4.46e)

a33 = −
L2
fCf + L2

rCr

Izvx
(4.46f)

a41 = cosψ (4.46g)

a42 = − sinψ (4.46h)

a46 = −vx sinψ − vy cosψ (4.46i)

a51 = sinψ (4.46j)

a52 = cosψ (4.46k)

a56 = vx cosψ − vy sinψ (4.46l)

a63 = 1 (4.46m)

and the non-zero entries of the control matrix B are given as following

b12 =
1

m
(4.47a)

b21 =
Cf
m

(4.47b)

b31 =
LfCf
Iz

(4.47c)

Next, we numerically evaluate the matrices A and B at each reference state and input

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 119

pair {z̄i}Tt=0, {ūi}Tt=0, where i indexes a single state/input pair:

Ai =
df

dz

∣∣∣∣z=z̄i
u=ūi

Bi =
df

du

∣∣∣∣z=z̄i
u=ūi

(4.48)

For each reference pair, the error dynamics of the system are given by:

∆żi = Ai∆zi +Bi∆ui (4.49)

where ∆zi = z − z̄i and ∆ui = u− ūi.
The optimal feedback policy is based on LQR with the following quadratic cost function:

J =

∫ ∞
t=0

(∆z>Q∆z + ∆u>R∆u)dt (4.50)

with state penalty matrix Q ∈ Sn×n++ and input penalty matrix R ∈ Sm×m++ . The control input
∆u that minimizes the cost function is given by the following

∆u = −R−1BTP∆z = −K∆z (4.51)

where P ∈ Sn×n++ , which can be obtained by solving Riccati equation. For each reference state
and input pair (z̄i, ūi) we recorded during the path planning phase, we now have a feedback
matrix Ki.

ut = ūi + ∆ui (4.52)

For the last part of the off-line design, we compute the state error between the states
predicted by the vehicle model f from (4.39) and the states measurements from the true
system. The true system in this case refers to either a high fidelity simulator like CarSim
or a physical experiment, depending on which system was used to produce the reference
trajectory.

To compute the state error, we first propagate the dynamics for the entire duration of
the trajectory using the vehicle model in (4.39), as shown in equation (4.53), where Ts is the
time step between consecutive state/input pairs:

ẑi+1 = ẑi + Tsf(ẑi, ūi) (4.53a)

ẑ0 = z̄0 (4.53b)

Then we calculate error e between the predicted state ẑ and the reference state zref as shown
below:

ei = ẑi − z̄i (4.54)

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 120

Online segment

The online controller performs two actions: (a) search for the nearest reference trajectory
point, and (b) apply either an open-loop or closed-loop input command. For the first part,
at each time step, the controller finds the ‘nearest’ reference position z̄i by performing the
optimization routine below:

arg min
z̄i∈{z̄i}Ti=0

‖zt − z̄i‖2 (4.55)

where zt is the current position estimate.
Next the online controller applies either a closed-loop or open-loop input. To decide

among the two, the controller propagates the vehicle model (4.39) forward in time for n
steps starting from the current state estimate zt. The controller propagates the dynamics
twice, once using an open-loop input sequence and once using a closed-loop one, adding the
state error terms at each time step, as shown below:

ˆ̂zi+1 = ˆ̂zi + Tsf(ˆ̂zi, ui) + ei+k (4.56a)

ui =

ūi+k +Ki+k(ˆ̂zi − z̄i+k) : CL

ūi+k : OL
(4.56b)

ˆ̂z0 = zt (4.56c)

The state errors terms e computed from equation (4.53) are added in equation (4.56) to
capture model mismatch between the vehicle model and the plant, especially during drifting.
The controller selects the input sequence that results in a smaller tracking error, expressed
in terms of the cost function below:

J =
n∑
k=0

(ˆ̂zk − z̄i+k)>Q(ˆ̂zk − z̄i+k) (4.57)

In general, the controller selects a closed-loop command in a well-modeled region and
selects an open-loop maneuver in poorly-modeled regions (i.e. drifting).

Experimental Results

The mixed control strategy was tested on the BARC platform with the following physical
parameters.

The experiments were conducted in an indoor space with the RC vehicle set to the same
initial position for each test. We began by running a series of open-loop tests using the
rule-based algorithm, recording the inputs during each test. After the tests, we selected a
drift-cornering trajectory that didn’t collide with the track boundaries, and set it as the
reference trajectory. Next, we ran another two sets of experiments, one using the proposed
algorithm, the other using the recorded inputs from the reference trajectory.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 121

Table 4.8: RC-car parameters

Parameter Value Parameter Value
m [kg] 1.95 Lr [m] 0.125

Iz [kg · m2] 0.24 Cf [N/rad] 1.76
Lf [m] 0.125 Cr [N/rad] 1.76

The blue paths in Figure 4.17 and Figure 4.18 show the reference trajectories. The green
paths in Figure 4.17 are the experimental results when the control commands are exactly
the same with inputs of reference trajectory. The green paths in Figure 4.18 are the results
when the proposed mixed open-loop and closed-loop controller is applied.
These results show that by using the pre-recorded open-loop control commands, the vehicle
fails to track the reference trajectory. By using the proposed mixed open-loop and closed-
loop strategy, the vehicle can repeatedly track the reference path. The vehicle recovers from
drifting reference errors during the straight segment of the track.
We tested the repeatability of the proposed control algorithm by tracking the same reference
trajectory multiple times. The experimental result shows that the proposed control algorithm
is applicable in practice by using only low-cost sensors. A video of the experiment can be
found at barc-project.com.

4.5 Conclusion

This chapter explored planning and control algorithms for steady state drifting, drift parking,
and drift cornering. This chapter start by discussing the control design for steady state
drift. The strategy centers on using a drift equilibrium reference state to design an LQR
control policy. The closed-loop policy initiates after a basic open-loop maneuver brings
the vehicle into the region of attraction. The second part of this chapter focused on the
planning and control of drift parking and drift cornering. The section discussed the using the
ideas of sample-based path planning and mixed open-loop closed-loop control as a complete
framework to perform autonomous drift maneuvers. These ideas presented to control each
one of these maneuvers was verified from experimental results using the BARC platform.

http://www.barc-project.com/projects/

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 122

Figure 4.17: Pure open loop control for the entire duration of the experiment results in poor
tracking behavior.

CHAPTER 4. PLANNING AND CONTROL OF DRIFT MANEUVERS 123

Figure 4.18: The mixed open-loop closed-loop control strategy consistently tracks the refer-
ence trajectory.

124

Chapter 5

Conclusion

The dissertation investigated planning and control of drift maneuvers and outlined the de-
velopment of a robotic platform for research and instruction in autonomous driving. For
the topics of drift parking and drift cornering, we discussed a path planning strategy and
then a mixed open-loop closed-loop control scheme for conducting transient, complex drift
maneuvers. The control strategy uses mixed open-loop and closed-loop control, based on the
observation that vehicle systems behave deterministically over a short duration when oper-
ating in open-loop (i.e. fixed sequence of input commands) from approximately the same
initial condition, even if the dynamics are complex and difficult to model.

Looking forward, some of the ideas presented in this dissertation remain open for fur-
ther investigation. The results from the mixed open-loop closed-loop framework work that
illustrate the method can work in practice, but it would be interesting to develop theoretical
guarantees about the stability of the controller using tools like reachability analysis. A simi-
lar extension could be to provide theoretical guarantees about switching between a collection
of open-loop controllers and closed-loop controllers that control various maneuvers. For the
work on the region of attraction, we only computed a boundary that accounted for input
saturation, but it would be interesting to see how nonlinear mapping for system inputs affect
the stability of the LQR controller.

Another direction for future work lies in the continued development of small-scale vehicle
platforms like the BARC. The BARC aims to be accessible to those interested in autonomous
driving and uses much of the same type of hardware and software in full-scale autonomous ve-
hicles. More effort can be placed into organizing the software structure so that the transition
to a full-scale platform is easier.

125

Appendix A

Equilibrium Analysis

The following MATLAB program performs state analysis on a with using a three state
dynamic bicycle model

1 % d r i f t−equ i l i b r i um a n a l y s i s
2 % @author : jon gonza l e s
3 c l c ;
4 c l o s e a l l ;
5 c l e a r a l l ;
6

7 %% d e f i n e system parameters
8 % v e h i c l e model
9 m = 1 . 9 8 ; % mass

10 I z = 0 . 2 4 ; % moment o f i n e r t i a about z−a x i s
11 vx = 1 . 2 ; % l o n g i t u d i n a l v e l o c i t y
12 Lf = 0 . 1 2 5 ; % d i s t anc e from CoG to f r o n t axe l
13 Lr = 0 . 1 2 5 ; % d i s t anc e from CoG to r ea r axe l
14 g = 9 . 8 1 ; % grav i ty
15 mu = 0 . 2 3 4 ; % c o e f f i c i e n t o f f r i c t i o n
16

17 % t i r e model parameters (Pacejka model)
18 B = 7 . 4 ;
19 C = 1 . 2 ;
20 D = −m*g*mu/2 ;
21

22 %% gr id s t e e r i n g ang le
23 df max = 20 ;
24 d f eq = (−df max : 1 : df max) * pi /180 ;
25 [˜ , nAngles] = s i z e (d f eq) ;
26

27 %% d e f i n e s to rage v a r i a b l e s

APPENDIX A. EQUILIBRIUM ANALYSIS 126

28 bta eq = ze ro s (3 , nAngles) ;
29 r eq = ze ro s (3 , nAngles) ;
30 Ffy eq = ze ro s (3 , nAngles) ;
31 Frx eq = ze ro s (3 , nAngles) ;
32 Fry eq = ze ro s (3 , nAngles) ;
33

34 %% s e t opera t ing modes
35 mode = { ’ c o rne r ing ’ , ’ d r i f t− l e f t ’ , ’ d r i f t−r i g h t ’ } ;
36 nModes = numel (mode) ;
37

38 %% get eq va lue s
39 f o r i = 1 : nModes
40 f o r j = 1 : nAngles
41 % d e f i n e symbol ic v a r i a b l e s
42 syms bta r Frx
43 df = d f eq (j) ;
44

45 % compute s l i p ang l e s
46 a f = atan (bta + Lf* r /vx)− df ;
47 ar = atan (bta − Lr* r /vx) ;
48

49 % compute f r o n t l a t e r a l f o r c e
50 Ffy = D* s i n (C*atan (B* a f)) ;
51

52 % compute r ea r l a t e a r l f o r c e
53 i f strcmp (mode{ i } , ’ c o rne r ing ’)
54 Fry = D* s i n (C*atan (B* ar)) ;
55 end
56 i f strcmp (mode{ i } , ’ d r i f t− l e f t ’)
57 Fry = s q r t (Dˆ2 − (Frx) ˆ2) ;
58 end
59 i f strcmp (mode{ i } , ’ d r i f t−r i g h t ’)
60 Fry = −s q r t (Dˆ2 − (Frx) ˆ2) ;
61 end
62

63 % d e f i n e system equat ions
64 dbta = (Ffy* cos (df) + Fry) /(m*vx) − r ;
65 dr = (Lf*Ffy* cos (df) − Lr*Fry) / I z ;
66 dvx = 1/m*(Frx − Ffy* s i n (df)) + r *vx*bta ;
67

68 % s o l v e f o r e q u i l i b r i a
69 s o l = vpaso lve ([dbta dr dvx] , [bta r Frx]) ;

APPENDIX A. EQUILIBRIUM ANALYSIS 127

70 bta eq (i , j) = s o l . bta ;
71 r eq (i , j) = s o l . r ;
72 Frx eq (i , j) = s o l . Frx ;
73

74 % compute f r o n t l a t e r a l f o r c e
75 a f = atan (s o l . bta + Lf* s o l . r /vx)− df ;
76 Ffy eq (i , j) = D* s i n (C*atan (B* a f)) ;
77

78 % compute r ea r l a t e a r l f o r c e
79 i f strcmp (mode{ i } , ’ c o rne r ing ’)
80 ar = atan (s o l . bta − Lr* s o l . r /vx) ;
81 Fry eq (i , j) = D* s i n (C*atan (B* ar)) ;
82 end
83 i f strcmp (mode{ i } , ’ d r i f t− l e f t ’)
84 Fry eq (i , j) = s q r t (Dˆ2 − (s o l . Frx) ˆ2) ;
85 end
86 i f strcmp (mode{ i } , ’ d r i f t−r i g h t ’)
87 Fry eq (i , j) = −s q r t (Dˆ2 − (s o l . Frx) ˆ2) ;
88 end
89 end
90 end

128

Appendix B

Schematics

The following schematic gives the technical drawing for the ‘top deck’ plate that mounts on
top of the Traxxas chassis

1

A

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

B

C

D

E

F

A

B

C

D

E

F

.
0

0
0

1
.
1

0
0

3
.
0

0
0

6
.
2

5
0

(
2

x
)

6
.
4

9
6

(
2

x
)

7
.
0

7
7

8
.
8

7
5

9
.
6

2
5

1
0

.
5

5
5

1
.
5

7
5

(
2

x
)

1
.
7

0
0

2
.
8

0
0

.000

.250

.644

1.995

2.045

2.451

3.286

4.045

5.486

5.736

3.243

2.493

R

1

.

1

9

2

(

2

x

)

R

.

4

0

0

(

4

x

)

Dept. Technical reference Created by Approved by

Document type Document status

Title DWG No.

Rev. Date of issue Sheet

12/1/2017v28

12/13/17Jong Lim

1/1
Motion Control
Base Plate

John GonzalesBrien Angelo.063 Alum 5052-H32Borelli MPC
All dimensions are in inches unless otherwise

specified

x =+/- .030

 xx =+/-.015

 xxx = +/-.010

This drawing is the property of UC Berkeley

and MPC Borelli Lab. It may not be copied

without the express written consent of the

author

Finish: Remove burrs and sharp

edges by jitterbug

 Clear Alodine

 Package to Protect

A(6x)

4.25mm thru

install PEM CLSM3-2

farside

A

A

A

A

A

B

B

B

B
B

A

Detail A

.472

.
4

7
2

R

.

1

1

8

"B" .136 thru(6x)

129

Bibliography

[1] Christopher G Atkeson and Stefan Schaal. “Learning tasks from a single demonstra-
tion”. In: Robotics and Automation, 1997. Proceedings., 1997 IEEE International Con-
ference on. Vol. 2. IEEE. 1997, pp. 1706–1712.

[2] Ashwin Carvalho. “Predictive Control under Uncertainty for Safe Autonomous Driving:
Integrating Data-Driven Forecasts with Control Design”. PhD thesis. University of
California, Berkeley, 2016.

[3] Imon Chakraborty, Panagiotis Tsiotras, and Jianbo Lu. “Vehicle posture control through
aggressive maneuvering for mitigation of T-bone collisions”. In: IEEE Conference on
Decision and Control. 2011.

[4] COGNITEAM. Hamster Micro AUGV. 2015. url: http://www.cogniteam.com/
assets/docs/hamster/hamster4_brochure.pdf.

[5] Mark Johnson Cutler. “Reinforcement learning for robots through efficient simulator
sampling”. PhD thesis. Massachusetts Institute of Technology, 2015.

[6] Sandeep Dhameja. “1.3 Introduction to Electric Vehicle Batteries”. In: Electric Vehicle
Battery Systems. Elsevier, 2002. isbn: 978-0-7506-9916-7. url: https://app.knovel.
com/hotlink/khtml/id:kt00BJO4I1/electric-vehicle-battery/introduction-

electric.

[7] Johannes Edelmann and Manfred Plöchl. “Handling characteristics and stability of the
steady-state powerslide motion of an automobile”. In: Regular and Chaotic Dynamics
14.6 (2009), p. 682.

[8] Penn Engineering. F1/10 platform. [Online; accessed June 1, 2018]. 2017. url: http:
//f1tenth.org/index.

[9] Paolo Falcone et al. “Predictive active steering control for autonomous vehicle sys-
tems”. In: IEEE Transactions on control systems technology 15.3 (2007), pp. 566–580.

[10] David J. Fleet and Yair Weiss. Handbook of Mathematical Models in Computer Vision.
Springer, 2006, pp. 628–647.

[11] Massimo Guiggiani. The science of vehicle dynamics: handling, braking, and ride of
road and race cars. Springer Science & Business Media, 2014.

http://www.cogniteam.com/assets/docs/hamster/hamster4_brochure.pdf
http://www.cogniteam.com/assets/docs/hamster/hamster4_brochure.pdf
https://app.knovel.com/hotlink/khtml/id:kt00BJO4I1/electric-vehicle-battery/introduction-electric
https://app.knovel.com/hotlink/khtml/id:kt00BJO4I1/electric-vehicle-battery/introduction-electric
https://app.knovel.com/hotlink/khtml/id:kt00BJO4I1/electric-vehicle-battery/introduction-electric
http://f1tenth.org/index
http://f1tenth.org/index

BIBLIOGRAPHY 130

[12] HardKernel. myAHRS+. [Online; accessed June 1, 2018]. 2015. url: https://www.
hardkernel.com/main/products/prdt_info.php?g_code=G141464363369.

[13] HardKernel. Odroid XU-4 CPU/RAM PERFORMANCE. [Online; accessed June 1,
2018]. 2015. url: https://www.hardkernel.com/main/products/prdt_info.php9.

[14] Rami Y Hindiyeh and J Christian Gerdes. “A Controller Framework for Autonomous
Drifting: Design, Stability, and Experimental Validation”. In: Journal of Dynamic Sys-
tems, Measurement, and Control 136.5 (2014), p. 051015.

[15] Rami Yusef Hindiyeh. “Dynamics and Control of Drifting in Automobiles”. PhD thesis.
Stanford University, 2013.

[16] Jessica K Hodgins and Marc H Raibert. “Biped Gymnastics”. In: The International
Journal of Robotics Research 9.2 (1990), pp. 115–128.

[17] HorizonHobby. EC2 Device Connector. url: https://www.horizonhobby.com/ec2-
device-connector-%5C%282%5C%29-eflaec201 (visited on 04/26/2018).

[18] HorizonHobby. EC3 Device Connector. url: https://www.horizonhobby.com/ec3-
battery-connector-%5C%282%5C%29-eflaec302 (visited on 04/26/2018).

[19] HorizonHobby. EC5 Device Connector. url: https://www.horizonhobby.com/ec5-
battery-connector-%5C%282%5C%29-eflaec502 (visited on 04/26/2018).

[20] School of Interactive Computing at the Georgia Institute of Technology. Autorally
platform. [Online; accessed June 1, 2018]. 2018. url: https://autorally.github.
io/.

[21] Matt Jardin. Improving Mass Moment of Inertia Measurements. 2010. url: https://
www.mathworks.com/company/newsletters/articles/improving-mass-moment-

of-inertia-measurements.html (visited on 01/30/2016).

[22] Jean-Jacques. Dirk Stratton - Drift-Vette. [Online; accessed June 1, 2018]. 2016. url:
https://www.flickr.com/photos/zenzak35/27497438246/in/photostream/.

[23] J Zico Kolter et al. “A probabilistic approach to mixed open-loop and closed-loop
control, with application to extreme autonomous driving”. In: Robotics and Automation
(ICRA), 2010 IEEE International Conference on. IEEE. 2010, pp. 839–845.

[24] Jason Kong et al. “Kinematic and dynamic vehicle models for autonomous driving
control design”. In: Intelligent Vehicles Symposium (IV), 2015 IEEE. IEEE. 2015,
pp. 1094–1099.

[25] Alexander Liniger, Alexander Domahidi, and Manfred Morari. “Optimization-based
autonomous racing of 1: 43 scale RC cars”. In: Optimal Control Applications and
Methods 36.5 (2015), pp. 628–647.

[26] Magni. [Online; accessed June 1, 2018]. 2018. url: https://robots.ros.org/magni/.

[27] MIT. RACECAR - A Powerful Platform for Robotics Research and Teaching. 2015.
url: https://mit-racecar.github.io/ (visited on 06/01/2018).

https://www.hardkernel.com/main/products/prdt_info.php?g_code=G141464363369
https://www.hardkernel.com/main/products/prdt_info.php?g_code=G141464363369
https://www.hardkernel.com/main/products/prdt_info.php9
https://www.horizonhobby.com/ec2-device-connector-%5C%282%5C%29-eflaec201
https://www.horizonhobby.com/ec2-device-connector-%5C%282%5C%29-eflaec201
https://www.horizonhobby.com/ec3-battery-connector-%5C%282%5C%29-eflaec302
https://www.horizonhobby.com/ec3-battery-connector-%5C%282%5C%29-eflaec302
https://www.horizonhobby.com/ec5-battery-connector-%5C%282%5C%29-eflaec502
https://www.horizonhobby.com/ec5-battery-connector-%5C%282%5C%29-eflaec502
https://autorally.github.io/
https://autorally.github.io/
https://www.mathworks.com/company/newsletters/articles/improving-mass-moment-of-inertia-measurements.html
https://www.mathworks.com/company/newsletters/articles/improving-mass-moment-of-inertia-measurements.html
https://www.mathworks.com/company/newsletters/articles/improving-mass-moment-of-inertia-measurements.html
https://www.flickr.com/photos/zenzak35/27497438246/in/photostream/
https://robots.ros.org/magni/
https://mit-racecar.github.io/

BIBLIOGRAPHY 131

[28] Hans Pacejka. Tire and vehicle dynamics. Elsevier, 2005.

[29] Giovanni Palmieri et al. “A robust lateral vehicle dynamics control”. In: 10th Interna-
tional Symposium on Advanced Vehicle Control (2010).

[30] Karl Popp and Werner Schiehlen. Ground vehicle dynamics. Springer Science & Busi-
ness Media, 2010.

[31] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media,
2011.

[32] Guinness World Records. Tightest parallel parking record beaten at new Mini launch –
Guinness World Records. [Online; accessed June 1, 2018]. 2012. url: https://www.
youtube.com/watch?v=q3BGkOKVMUU.

[33] ROSbot. [Online; accessed June 1, 2018]. 2018. url: https://robots.ros.org/

rosbot/.

[34] Will Roscoe. Donkey Car. [Online; accessed June 1, 2018]. 2017. url: http://www.
donkeycar.com/.

[35] DC Shoes. Ken Block’s Gymkhana THREE, Part 2; Ultimate Playground. [Online; ac-
cessed June 1, 2018]. 2010. url: https://www.youtube.com/watch?v=4TshFWSsrn8.

[36] SparkFun. 4mm Supra X Gold Bullet Connectors. url: https://hobbyking.com/
en _ us / 4mm - supra - x - gold - bullet - connectors - 10 - pairs . html (visited on
04/26/2018).

[37] SparkFun. Deans Connector - M/F Pair. url: https://www.sparkfun.com/products/
11864 (visited on 04/26/2018).

[38] SparkFun. XT60 Connectors - Male/Female Pair. url: https://www.sparkfun.com/
products/10474 (visited on 04/26/2018).

[39] Tamiya. Powerpole Connectors - PP15 to PP45 : up to 55 Amps. url: https://www.
greatplanes.com/miscproducts/connectors.php (visited on 05/01/2018).

[40] Davide Tavernini et al. “The optimality of the handbrake cornering technique”. In:
Journal of Dynamic Systems, Measurement, and Control (2014).

[41] Traxxas. Traxxas High-Current Connector. url: https://traxxas.com/products/
parts/accessories/highcurrentconnector?t=overview (visited on 04/26/2018).

[42] TurtleBot. [Online; accessed June 1, 2018]. 2018. url: https://www.turtlebot.com/
about/.

[43] E Velenis and P Tsiotras. “Minimum time vs maximum exit velocity path optimization
during cornering”. In: 2005 IEEE international symposium on industrial electronics.
2005, pp. 355–360.

[44] Efstathios Velenis, Panagiotis Tsiotras, and Jianbo Lu. “Optimality properties and
driver input parameterization for trail-braking cornering”. In: European Journal of
Control 14.4 (2008), pp. 308–320.

https://www.youtube.com/watch?v=q3BGkOKVMUU
https://www.youtube.com/watch?v=q3BGkOKVMUU
https://robots.ros.org/rosbot/
https://robots.ros.org/rosbot/
http://www.donkeycar.com/
http://www.donkeycar.com/
https://www.youtube.com/watch?v=4TshFWSsrn8
https://hobbyking.com/en_us/4mm-supra-x-gold-bullet-connectors-10-pairs.html
https://hobbyking.com/en_us/4mm-supra-x-gold-bullet-connectors-10-pairs.html
https://www.sparkfun.com/products/11864
https://www.sparkfun.com/products/11864
https://www.sparkfun.com/products/10474
https://www.sparkfun.com/products/10474
https://www.greatplanes.com/miscproducts/connectors.php
https://www.greatplanes.com/miscproducts/connectors.php
https://traxxas.com/products/parts/accessories/highcurrentconnector?t=overview
https://traxxas.com/products/parts/accessories/highcurrentconnector?t=overview
https://www.turtlebot.com/about/
https://www.turtlebot.com/about/

BIBLIOGRAPHY 132

[45] Efstathios Velenis et al. “Steady-state drifting stabilization of RWD vehicles”. In: Con-
trol Engineering Practice 19.11 (2011), pp. 1363–1376.

[46] John Warner. “3.3 Battery Terms”. In: Handbook of Lithium-Ion Battery Pack De-
sign - Chemistry, Components, Types and Terminology. Elsevier, 2015. isbn: 978-0-
12-801456-1. url: https://app.knovel.com/hotlink/khtml/id:kt00UCJJU6/

handbook-lithium-ion/battery-terms.

[47] Bruce Wootton. Dator - Cloud Data For Robots. [Online; accessed June 1, 2018]. 2015.
url: https://github.com/MPC-Berkeley/barc/tree/master/Dator.

https://app.knovel.com/hotlink/khtml/id:kt00UCJJU6/handbook-lithium-ion/battery-terms
https://app.knovel.com/hotlink/khtml/id:kt00UCJJU6/handbook-lithium-ion/battery-terms
https://github.com/MPC-Berkeley/barc/tree/master/Dator

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Background
	Outline and Contributions

	Vehicle Models
	Introduction
	Point-mass Model
	Kinematic Model
	Dynamic Models
	Model Fidelity
	Model Identification
	Equilibrium Analysis
	Conclusion

	Berkeley Autonomous Race Car
	Platform Review
	Mechanical Components
	Electrical Components
	Power System Architecture
	Teaching Applications
	Conclusion

	Planning and Control of Drift Maneuvers
	Autonomous Steady State Drifting
	Path Planning and Mixed Open-loop Closed-loop Control
	Autonomous Drift Parking
	Autonomous Drift Cornering
	Conclusion

	Conclusion
	Equilibrium Analysis
	Schematics
	Bibliography

