

Marvelmind Boxie API

Version 2022.08.07

www.marvelmind.com

http://www.marvelmind.com/

2

Table of contents

1. Marvelmind Boxie API... 3

1.1. Installation for Windows .. 4

1.2. Installation for Linux .. 5

1.3. Check connection to API .. 6

1.4. Marvelmind Boxie API library description ... 7

1.4.1. Get version of Marvelmind API library .. 9

1.4.2. Get last error ... 10

1.4.3. Open serial port .. 11

1.4.4. Open serial port by given name .. 12

1.4.5. Close serial port .. 13

1.4.6. Get version and CPU ID of Marvelmind device .. 14

1.4.7. Get list of devices .. 15

1.4.8. Get latest location data ... 16

1.4.9. Get latest beacons location data (with angle) ... 17

1.4.10. Command for immediate robot movement (like arrows in dashboard) 18

1.4.11. Command for robot stopping .. 19

1.4.12. Send robot movement program item .. 20

1.4.13. Send command to the robot.. 21

1.4.14. Read Boxie telemetry data.. 22

1.4.15. Read Boxie lidars data .. 23

1.4.16. Read Boxie location data .. 24

3

1. Marvelmind Boxie API

Marvelmind Boxie API is a part of Marvelmind API library, used by Marvelmind Dashboard software
and provides interface to user’s software. API is coming as dynamic-link library (DLL) for MS
Windows and shared library for Linux (x86 and ARM platforms).

Description of navigation related Marvelmind API library functions can be found in the document
about protocols and interfaces.

In addition to the API library, the package includes C example software, which was used for testing
of the API and includes calls of all API functions.

The example can be used as a basis for developing of a user’s software and for porting API library
interface (file ‘marvelmind_boxie_api.c’) to other programming languages.

Before using Marvelmind Boxie API you should build the map as described in the manual, check
tracking of the Marvelmind Boxie robot and try to move it with arrows in the dashboard.

After that, close the dashboard and start using the API (modem should be connected to the PC via
USB, it is used for communication with the Boxie robot).

Tested on:
1. MS Windows XP; CPU: Intel Core 2 Duo
2. MS Windows 10; CPU: Intel Core i5 Duo 3.1 GHz
3. Ubuntu 16.04; CPU: Intel Core i5 3.1 GHz
4. Raspbian (2018-11-13-raspbian-stretch-full); Platform: Raspberry Pi 3 Model B+

https://marvelmind.com/pics/marvelmind_interfaces.pdf
https://marvelmind.com/downloads/marvelmind_boxie_operating_manual.pdf

4

1.1. Installation for Windows

- Download Marvelmind Boxie API software package. Copy API dll and example software to
directory that you will use for the program. Windows version of the example is coming with
prebuilt executable file, you can immediately run ‘mm_boxie_api_example.exe’ from the
‘windows’ directory coming in API software package.

5

1.2. Installation for Linux

- Download Marvelmind Boxie API software package. Copy Dashboard API to directory that you
will use for the program. Note the Linux version is provided for two hardware platforms: x86
(most of laptops based on Intel or AMD CPU) and arm (for example, single-board computers
like Raspberry PI)

- Copy library libdashapi.so corresponding to your platform to the directory /usr/local/lib by
executing command sudo cp libdashapi.so /usr/local/lib in terminal opened in directory with
libdashapi.so. After that, execute sudo ldconfig in terminal.

- May be, you will need to give rights for your user to access serial port by adding him to dialout
group:

 Execute in terminal: sudo adduser $USER dialout

 Add to the directory /etc/udev/rules.d file “99-tty.rules” with following content:
#Marvelmind serial port rules
KERNEL==”ttyACM0”,GROUP=”dialout”,MODE=”666”

- Build the example software – execute ‘make all’ in terminal opened in ‘source’ directory coming
with the package

- Run the example by typing ‘./mm_api_example’ in terminal

6

1.3. Check connection to API

After running example software, press “space” button in terminal, type command ‘version’ and
press enter. If the example software prints version of API, it can communicate with API library.

7

1.4. Marvelmind Boxie API library description

API is coming as dynamic-link library (DLL) for MS Windows and shared library for Linux (x86 and
ARM platforms). The library includes set of functions for monitoring and controlling Marvelmind
system via modem connected to USB port of the computer. This section of document contains
description of all these functions.

To provide more compatibility with different programming languages, most of complex data
structures are passing via untyped pointers to memory. Functions description include offset of
every data field in the memory pool. In the file ‘marvelmind_boxie_api.c’ from the example
software you can see implementation of moving data between memory pools and fields in C
structures.

Types of parameters in the description are shown in C syntax. Here is description of the types:

Type Size
(bytes)

Description

bool 1 Boolean type. Zero means false, non-zero means true

uint8_t 1 Unsigned integer value, 0…255

int8_t 1 Signed integer value in two’s complement format, -128…127

uint16_t 2 Unsigned integer value, 0…65535

int16_t 2 Signed integer value in two’s complement format, -
32768…32767

uint32_t 4 Unsigned integer value, 0…4294967295

int32_t 4 Signed integer value in two’s complement format,
-2147483648…2147483647

void * 4/8 Memory pointer (address in memory).
4 bytes for 32-bit platforms, 8 bytes for 64-bit platforms.

Each function description includes set of API versions where this function is available. New API
versions will support more functions for new features in Marvelmind system. Now not all
features available in Dashboard are available via API, so if you need more API functions please
ask to info@marvelmind.com.

mailto:info@marvelmind.com

8

List of supported functions:

Function API
versions

License needed

Get version of Marvelmind API library V1+ none

Get last error V6+ none

Try to open serial port V1+ none

Try to open serial port by given name V2+ none

Close serial port V1+ none

Get version and CPU ID of Marvelmind device V1+ none

Get list of devices V1+ none

Get latest beacons location data V1+ none

Get latest beacons location data (with angle) V3+ none

Immediate robot movement (like arrows in dashboard) V7+ none

Stop the robot V7+ none

Send robot movement program item (waypoint etc) V7+ none

Send command to the robot V7+ none

Read Boxie telemetry data V7+ none

Read Boxie lidars data V7+ none

Read Boxie location data V7+ none

9

1.4.1. Get version of Marvelmind API library

Reads version of the API library. Required to ensure the needed functions are available in this
version of library.

Function name: mm_api_version
Declaration in C: bool mm_api_version(void *pdata);
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer.

Type Description

uint32_t Version of API library

10

1.4.2. Get last error

Reads status of last operation with API library to differ causes of the error.

Function name: mm_get_last_error
Declaration in C: bool mm_get_last_error(void *pdata);
Available for API versions: V6+

License required: none

Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer.

Type Description

uint32_t Status of last operation:
0: operation successfully executed
1: communication error
2: error opening serial port
3: license is required

11

1.4.3. Open serial port

Opens port where Marvelmind device (modem or beacon) is connected via USB (virtual serial
port). You don’t need to specify serial port name, because the API searching all serial ports and
checks whether it corresponds to Marvelmind device or no.

Function name: mm_open_port
Declaration in C: bool mm_open_port ();
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed, port is opened
false – error in execution

Parameters: none

12

1.4.4. Open serial port by given name

Opens port where Marvelmind device (modem or beacon) is connected via USB (virtual serial
port). Function tries to open port with specified name.

Function name: mm_open_port_by_name
Declaration in C: bool mm_open_port_by_name();
Available for API versions: V2+

License required: none

Returned value:

Type Description

bool true – function successfully executed, port is opened
false – error in execution

Parameters:
Type Description

void * Pointer to serial portname – sequence of ASCII
characters terminated by zero (ASCIIZ)

13

1.4.5. Close serial port

Closes port, if it was previously opened by mm_open_port function.
Function name: mm_close_port
Declaration in C: bool mm_close_port ();
Available for API versions: V1+

License required: none

Returned value:

Type Description

bool true – function successfully executed, port is closed
false – error in execution

Parameters: none

14

1.4.6. Get version and CPU ID of Marvelmind device

Reads version and CPU ID. Version includes information about firmware version and type of
device hardware. CPU ID is the unique ID of the device item.

Function name: mm_get_device_version_and_id
Declaration in C: bool mm_get_device_version_and_id (uint8_t address, void
*pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, version and CPU ID data retrieved
false – error in execution

Parameters:
Type Description

uint8_t Address of Marvelmind device (1…254)

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Major version of firmware (example: “6”, for version V6.07a)

uint8_t Minor version of firmware (example: “7”, for version V6.07a)

uint8_t Second minor version of firmware (example: “1”, for version V6.07a)

uint8_t Device type ID (see appendix).

uint8_t Firmware options (TBD).

uint32_t CPU ID. Printing this value as hexadecimal gives CPU ID in form shown in
dashboard and on the stickers on devices.

15

1.4.7. Get list of devices

Reads list of Marvelmind devices known to modem. The list includes list of all devices connected
by radio to modem’s network, including sleeping devices.

Function name: mm_get_devices_list
Declaration in C: bool mm_get_devices_list (void *pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, list of devices is retrieved
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer:

Type Description

uint8_t Number of following devices in the list (N)

N*9
bytes

Sequence of N devices structures, described in next table

Structure of each device in the list:

Type Description

uint8_t Address of device

bool true = duplicated address - more than 1 device with same address was found
false = not duplicated address

bool true = device is sleeping
false = device not sleeping

uint8_t Major version of firmware (example: “6”, for version V6.07a)

uint8_t Minor version of firmware (example: “7”, for version V6.07a)

uint8_t Second minor version of firmware (example: “1”, for version V6.07a)

uint8_t Device type ID (see appendix).

uint8_t Firmware options (TBD).

uint8_t Flags:
Bit 0: 1 – device connection complete – device has confirmed connection
 0 – waiting for confirmation from device (like ‘Connecting…’ in dashboard).
Bit 1…7 - TBD

16

1.4.8. Get latest location data

Reads latest updated beacons coordinates pack from modem. Also reads user payload data if
available.

Function name: mm_get_last_locations
Declaration in C: bool mm_get_last_locations(void *pdata);
Available for API versions: V1+

License required: none

Returned value:
Type Description

bool true – function successfully executed, location data was retrieved
false – error in execution

Parameters:
Type Description

void
*

Pointer to data to be filled

Structure of data returned via pointer:

Type Description

18*6
bytes

6 18-byte data structures of last updated coordinates, see table below

bool true – new raw distances are available to read

5 bytes TBD

uint8_t User payload data size (M)

M
bytes

User payload data

Structure of each location data item:

Type Description

uint8_t Address of device (1…254)
0 - this data item is not filled

uint8_t Head index (TBD)

int32_t X coordinate, mm

int32_t Y coordinate, mm

int32_t Z coordinate, mm

uint8_t Status flags (TBD)

uint8_t Quality of positioning, 0…100%

uint8_t TBD

uint8_t TBD

17

1.4.9. Get latest beacons location data (with angle)

Reads latest updated beacons coordinates pack from modem (with angle for paired beacons).
Also reads user payload data if available.

Function name: mm_get_last_locations2
Declaration in C: bool mm_get_last_locations2(void *pdata);
Available for API versions: V3+
License required: none

Returned value:
Type Description

bool true – function successfully executed, location data was retrieved
false – error in execution

Parameters:

Type Description

void * Pointer to data to be filled

Structure of data returned via pointer:

Type Description

20*6 bytes 6 20-byte data structures of last updated coordinates, see table below

bool true – new raw distances are available to read

5 bytes TBD

uint8_t User payload data size (M)

M bytes User payload data

Structure of each location data item:

Type Description

uint8_t Address of device (1…254)
0 - this data item is not filled

uint8_t Head index (TBD)

int32_t X coordinate, mm

int32_t Y coordinate, mm

int32_t Z coordinate, mm

uint8_t Status flags (TBD)

uint8_t Quality of positioning, 0…100%

uint8_t TBD

uint8_t TBD

uint16_t Bit 0…11 – angle of rotation in 1/10 degree (if paired beacons feature is
enabled)
Bit 12 – 1 = angle not available
Bit 13…15 - reserved

18

1.4.10. Command for immediate robot movement (like arrows in dashboard)

Send command for immediate robot movement.

Function name: mm_robot_movement

Declaration in C: bool mm_robot_movement (uint8_t address, void *pdata);

Available for API versions: V7+

License required: none
Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address – address of the robot

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

uint8_t move_type – type of the robot movement:
0 – forward
1 – backward
2 – rotate clockwise
3 – rotate counterclockwise

64 bytes Reserved (0)

19

1.4.11. Command for robot stopping

Send command for stopping robot movement.

Function name: mm_robot_stop

Declaration in C: bool mm_robot_stop (uint8_t address);

Available for API versions: V7+

License required: none
Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address – address of the robot

20

1.4.12. Send robot movement program item

Send movement program item to the robot.

Function name: mm_set_robot_program_item

Declaration in C: bool mm_set_robot_program_item (uint8_t address, void *pdata);

Available for API versions: V7+

License required: none
Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address – address of the robot

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

uint8_t Item_index – index of this program item (starting from 0)

uint8_t Items_number – total number of program items

uint8_t OpCode – type of the action:
0 – move forward
1 – move backward
2 – rotate clockwise
3 – rotate counterclockwise
6 – move to specified waypoint

int16_t Param1 – first movement parameter:
If OpCode is 0 or 1 – distance of movement, cm
If OpCode is 2 or 3 – angle of rotation, degrees
If Opcode is 6 – X coordinate of waypoint, cm

int16_t Param2 – second movement parameter:
If Opcode is 6 – Y coordinate of waypoint, cm

int16_t Param3 – third movement parameter:
If Opcode is 6 – Z coordinate of waypoint, cm (not used for Boxie)

21

1.4.13. Send command to the robot

Send command to the robot.

Function name: mm_set_robot_command

Declaration in C: bool mm_set_robot_command (uint8_t address, void *pdata);

Available for API versions: V7+

License required: none
Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address – address of the robot

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

uint8_t Command_id – command type:
4 – pause executing movement program
8 – continue executing movement program
9 – start executing movement program from the first item

int16_t Param1 – first parameter (not used)

int16_t Param2 – second parameter (not used)

int16_t Param3 – third parameter (not used)

22

1.4.14. Read Boxie telemetry data

Reads telemetry data from Boxie.

Function name: mm_get_boxie_telemetry

Declaration in C: bool mm_get_boxie_telemetry (uint8_t address, void *pdata);

Available for API versions: V7+

License required: none
Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address – address of the robot

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

int16_t Vbat – Boxie battery voltage, mV

int16_t Current – Boxie supply current, mA

int16_t Pwr_left – power on the left wheel, percents

int16_t Pwr_right – power on the right wheel, percents

int16_t Odo_left – speed of the left wheel by odometry, mm/s

int16_t Odo_right – speed of the right wheel by odometry, mm/s

64 bytes Reserved

23

1.4.15. Read Boxie lidars data

Reads lidars data from Boxie.

Function name: mm_get_boxie_lidars

Declaration in C: bool mm_get_boxie_lidars (uint8_t address, void *pdata);

Available for API versions: V7+

License required: none
Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address – address of the robot

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

48 bytes Data from 12 Boxie lidars, 4 bytes per lidar

64 bytes Reserved

Structure of data for each lidar:

Type Description

uint16_t Range - range measured by lidar, mm

uint8_t Status – status of the measurement:
0 – range is measured
Other values – range is not measured, Range field is nor relevant

uint8_t Reserved

24

1.4.16. Read Boxie location data

Reads location data from Boxie.

Function name: mm_get_boxie_location

Declaration in C: bool mm_get_boxie_location (uint8_t address, void *pdata);

Available for API versions: V7+

License required: none
Returned value:

Type Description

bool true – function successfully executed
false – error in execution

Parameters:

Type Description

uint8_t address – address of the robot

void * pdata - pointer to data to write

Structure of data by pointer:

Type Description

int32_t x_mm – X coordinate, mm

int32_t y_mm – Y coordinate, mm

int32_t z_mm – Z coordinate, mm (currently not used)

int16_t yaw – yaw angle, degrees

64 bytes Reserved

25

4.5.4. Description of C example for Marvelmind Boxie API

C example is used for testing of Marvelmind Boxie API and can be used as basis for building of
user application.

The C example is the console application. It was tested on following platforms:

 CPU: Intel Core 2 Duo, OS: MS Windows XP;

 MS Windows 10; CPU: Intel Core i5 Duo 3.1 GHz

 CPU: Intel Core i5, OS: Linux Ubuntu 16.04;

 Raspberry Pi 3 Model B+, OS: Raspbian (2018-11-13-raspbian-stretch-full)

On the Windows platform the example was built with CodeBlocks IDE and so the example
includes CodeBlocks project file.

On the Linux platforms, the example was built with using make utility and so the example
includes makefile for this.

The example includes following modules:

File name Description

main.c Module with main () function. Calls of functions of example and implements
simple command line interface.

marvelmind_example.c
marvelmind_example.h

marvelmindStart() – initialization of the example
marvelmindFinish() – called after finishing work with API
marvelmindCycle() – frequently called from main loop

Also, module includes several function for processing commands entered by
user.

marvelmind_boxie_api.c
marvelmind_boxie_api.h

marvelmindAPILoad() – loads API library
marvelmindAPIFree() – frees memory used by API library
All functions of communication with API library.

marvelmind_devices.c
marvelmind_devices.h

Supports list of beacons retrieved from modem by calling ‘get devices list’
command

marvelmind_pos.c
marvelmind_pos.h

Reads latest beacons location data. Updates these data in the devices list.

marvelmind_utils.c
marvelmind_utils.h

Some helper functions used by other modules.

How the example works:

1. Try to open serial port until success
2. When port is opened, the program reads version of device connected via USB. If this is

modem, the program continues to execute next steps
3. When connected to modem, the program reads the devices list with 1 Hz rate. The

devices list is compared with currently stored in marvelmind_devices.c module and the
list in marvelmind_devices.c is updated, if any changes are detected. All changes are
printed in console

4. When connected to modem, the program reads the latest location data with 20 Hz
rate.

5. If the program can’t get latest location data for 10 times, it closes the port and returns
to step 1 – tries to open the port again. Reopening of the port is needed for cases when
modem was disconnected and connected back to USB

26

6. If user press ‘space’ button, the program shows ‘Enter command: ‘ message and waits
for user command. Most of API functions are called by user command, see below for
details

User commands:

If user press ‘space’ button when program is running, the program shows message ‘Enter
command: ‘. User should type command on keyboard and press enter.

The table below contains format of all user commands:

Commands group Description

API version Format of command:
version
Action:
Prints version of API library

Exit from program Format of command:
quit
Action:
Finishes program execution

Boxie commands Format of command:
boxie move <address> <move_type>
Action:
Execute command to move the robot with specified movement type.
Example:
boxie move 110 0 - move forward Boxie robot n110

Format of command:
boxie stop <address>
Action:
Execute command to stop the robot.
Example:
boxie stop 110 - stop Boxie robot n110

Format of command:
boxie start <address>
Action:
Execute command to start the robot movement by the specified
program.
Example:
boxie start 110 - start execution of movement program
for Boxie robot n110

Format of command:
boxie pause <address>
Action:
Execute command to pause the robot movement by the specified
program.
Example:
boxie pause 110 - pause the Boxie robot n110

27

Format of command:
boxie continue <address>
Action:
Execute command to continue the robot previously paused
movement by the specified program.
Example:
boxie continue 110 - continue movement the Boxie robot n110

Format of command:
boxie program <address>
Action:
Starts creating the movement program.
Example:
boxie program 110 - start creating program for the Boxie robot
n110
After this a new command prompt is appeared:
Robot program command:
Following commands are supported:
end – finish creating program and send it to the robot
forward <distance in cm> - forward movement
backward <distance in cm> - backward movement
clockwise <angle in degrees> - rotate clockwise
counterclockwise <angle in degrees> - rotate counterclockwise
waypoint <x, cm> <y, cm> - move to specified waypoint X, Y

Format of command:
boxie tele <address>
Action:
Execute command to read telemetry data and print the data
Example:
boxie tele 110 - read and print telemetry of the Boxie robot
n110

Format of command:
boxie lidars <address>
Action:
Execute command to read lidars data and print the data
Example:
boxie lidars 110 - read and print lidars data of the Boxie robot
n110

Format of command:
boxie location <address>
Action:
Execute command to read location data and print the data
Example:
boxie location 110 - read and print location data of the Boxie
robot n110

