

Protocol of data exchange with mobile beacon

via USB and UART interfaces

Version 2015.11.18

Valid for firmware v4.07 and newer

To get location data from mobile beacon (hedgehog), it shall be connected to an external device (robot,

copter, AGV, etc.) via any of the following interfaces:

1. Connect to USB-host as an USB device of CDC class (virtual COM port in Windows, ttyUSB or

ttyACM in Linux). In the Windows, it requires driver - the same driver as for modem. In Linux,

the driver is not required, since the required driver is integrated into Linux kernel. Because real

RS-232 is not used in the interface, parameters of serial port opened on the host (baudrate,

number of bits, parity, etc) may be any.

2. Connect to UART on a hedgehog – 2 wires soldering to pins required. See the picture of beacon

interface below. To have the location data out, it is sufficient to connect only 2 wires: GND and

USART2_TX. Logic level of UART transmitter is CMOS 3.3V. Default baudrate is 500 kbps,

firmware versions V4.02+ support configurable from the Dashboard baudrate from following

list: 4.8, 9.6, 19.2, 38.4, 57.6, 115.2, 500 kbps. Format of data: 8 bit, no parity, 1 stop bit.

The hedgehog constantly streams out packets of data without any request.

Data is represented in binary format.

Multibyte numbers are transmitted starting from low byte (little endian format).

Packets format

1. General packet format

All packets have same general structure:

Offset Size (bytes) Type Description Value

0 1 uint8_t Address (constant value now) 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet See detail

4 1 uint8_t Number of bytes of data transmitting N

5 N N bytes Payload data according to code of data field

5+N 2 uint16_t CRC-16 (see appendix)

1.1. Packet of hedgehog coordinates (code of data 0x0001).

This packet is transmitted every time new coordinates are measured or failed to measure.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0001

4 1 uint8_t Number of bytes of data transmitting 0x10

5 4 uint32_t Timestamp – internal time of beacon

measured in alpha-cycle periods (1/64 sec)

from the moment of the latest wakeup

event

9 2 int16_t Coordinate X of beacon, cm

11 2 int16_t Coordinate Y of beacon, cm

13 2 int16_t Coordinate Z, height of beacon, cm

15 1 uint8_t Byte of flags:

Bit 0: 1 - coordinates unavailable. Data

from fields X,Y,Z should not be used.

Bit 1…7 – reserved (0)

16 5 5 bytes Reserved (0)

21 2 uint16_t CRC-16 (see appendix)

1.2. Packet of all beacons coordinates (code of data 0x0002).

This packet is transmitted when system becomes frozen, and repeats every 10 sec.

Offset Size (bytes) Type Description Value

0 1 uint8_t Address 0xff

1 1 uint8_t Type of packet 0x47

2 2 uint16_t Code of data in packet 0x0002

4 1 uint8_t Number of bytes of data transmitting 1+N*8

5 1 uint8_t Number of beacons in packet N

6 1 N*8 bytes Data for N beacons

6+N*8 2 uint16_t CRC-16 (see appendix)

Format of data structure for every of N beacons:

Offset Size (bytes) Type Description

0 1 uint8_t Address of beacon

1 2 int16_t Coordinate X of beacon, cm

3 2 int16_t Coordinate Y of beacon, cm

5 2 int16_t Coordinate Z, height of beacon, cm

7 1 uint8_t Reserved (0)

Appendix1. Calculating CRC-16

For checksum the CRC-16 is used. Last two bytes of N-bytes frame are filled with CRC-16, applied to first

(N-2) bytes of frame. To check data you can apply CRC-16 to all frame of N bytes, the result value should

be zero.

Below is the implementation of the algorithm in the 'C':

typedef ushort ModbusCrc;// ushort – two bytes

typedef union {

 ushort w;

 struct{

 uchar lo;

 uchar hi;

 } b;

 ucharbs[2];

} Bytes;

static Modbus CrcmodbusCalcCrc(const void *buf, ushort length)

{

 uchar *arr = (uchar *)buf;

 Bytes crc;

 crc.w = 0xffff;

 while(length--){

 chari;

 bool odd;

 crc.b.lo ^= *arr++;

 for(i = 0; i< 8; i++){

 odd = crc.w& 0x01;

 crc.w>>= 1;

 if(odd)

 crc.w ^= 0xa001;

 }

 }

 return (ModbusCrc)crc.w;

}

Appendix2. Data dump

